zbMATH — the first resource for mathematics

Nonlinearity continuation method for steady-state groundwater flow modeling in variably saturated conditions. (English) Zbl 1462.76130
Summary: Application of nonlinearity continuation method to numerical solution of steady-state groundwater flow in variably saturated conditions is presented. In order to solve the system of nonlinear equations obtained by finite volume discretization of steady-state Richards equation, a series of problems with increasing nonlinearity are solved using the Newton method. This approach is compared to pseudo-transient method on several test cases, including real site problems and involving parallel computations.
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography
Full Text: DOI
[1] Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, 1, 5, 318-333 (1931) · Zbl 0003.28403
[2] Bear, J.; Cheng, A. H.-D., Modeling Groundwater Flow and Contaminant Transport, Vol. 23 (2010), Springer Science & Business Media · Zbl 1195.76002
[3] Parlange, J.-Y.; Hogarth, W.; Barry, D. A.; Parlange, M.; Haverkamp, R.; Ross, P.; Steenhuis, T.; DiCarlo, D.; Katul, G., Analytical approximation to the solutions of Richards’ equation with applications to infiltration, ponding, and time compression approximation, Adv. Water Resour., 23, 2, 189-194 (1999)
[4] Farthing, M. W.; Ogden, F. L., Numerical solution of Richards’ equation: a review of advances and challenges, Soil Sci. Am. J., 81, 6, 1257-1269 (2017)
[5] Farthing, M. W.; Kees, C. E.; Coffey, T. S.; Kelley, C. T.; Miller, C. T., Efficient steady-state solution techniques for variably saturated groundwater flow, Adv. Water Resour., 26, 8, 833-849 (2003)
[6] Celia, M. A.; Bouloutas, E. T.; Zarba, R. L., A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 7, 1483-1496 (1990)
[7] Diersch, H.-J.; Perrochet, P., On the primary variable switching technique for simulating unsaturated-saturated flows, Adv. Water Resour., 23, 3, 271-301 (1999)
[8] Jäger, W.; Kačur, J., Solution of porous medium type systems by linear approximation schemes, Numer. Math., 60, 1, 407-427 (1991) · Zbl 0744.65060
[9] Pop, I. S.; Radu, F.; Knabner, P., Mixed finite elements for the Richards’ equation: linearization procedure, J. Comput. Appl. Math., 168, 1-2, 365-373 (2004) · Zbl 1057.76034
[10] Mitra, K.; Pop, I. S., A modified L-scheme to solve nonlinear diffusion problems, Comput. Math. Appl., 77, 6, 1722-1738 (2019) · Zbl 1442.65215
[11] Lehmann, F.; Ackerer, P., Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media, Trans. Porous Med., 31, 3, 275-292 (1998)
[12] List, F.; Radu, F. A., A study on iterative methods for solving Richards’ equation, Comput. Geosci., 20, 2, 341-353 (2016) · Zbl 1396.65143
[13] Paniconi, C.; Putti, M., A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems, Water Resour. Res., 30, 12, 3357-3374 (1994)
[14] Reddy, J. N.; Gartling, D. K., The Finite Element Method in Heat Transfer and Fluid Dynamics (2010), CRC press · Zbl 1257.80001
[15] Kapyrin, I.; Ivanov, V.; Kopytov, G.; Utkin, S., Integral code GeRa for RAW disposal safety validation, Gornyi Zh., 10, 44-50 (2015)
[16] Van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1, Soil Sci. Am. J., 44, 5, 892-898 (1980)
[17] Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 3, 513-522 (1976)
[18] Lipnikov, K.; Moulton, D.; Svyatskiy, D., New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation, Adv. Water Res., 94, 11-22 (2016)
[19] Anuprienko, D.; Kapyrin, I., Modeling groundwater flow in unconfined conditions: numerical model and solvers’ efficiency, Lobachevskii J. Math., 39, 7, 867-873 (2018) · Zbl 1442.76003
[20] Plenkin, A. V.; Chernyshenko, A. Y.; Chugunov, V. N.; Kapyrin, I. V., Adaptive unstructured mesh generation methods for hydrogeological problems, Numerical Methods and Programming, 16, 518-533 (2015)
[21] Aavatsmark, I.; Barkve, T.; Bøe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods, SIAM J. Sci. Comput., 19, 5, 1700-1716 (1998) · Zbl 0951.65080
[22] Kao, R., A comparison of Newton-Raphson methods and incremental procedures for geometrically nonlinear analysis, Comput. Struct., 4, 5, 1091-1097 (1974)
[23] Schmidt, W. F., Adaptive step size selection for use with the continuation method, Internat. J. Numer. Methods Engrg., 12, 4, 677-694 (1978) · Zbl 0373.65024
[24] Danilov, A. A.; Terekhov, K. M.; Konshin, I. N.; Vassilevski, Y. V., Parallel software platform INMOST: a framework for numerical modeling, Supercomput. Front. Innov., 2, 4, 55-66 (2016)
[25] Van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[26] Balay, S.; Abhyankar, S.; Adams, M.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W., PETSc users manual (2019)
[27] Konshin, I.; Kaporin, I.; Nikitin, K.; Vassilevski, Y., Parallel linear systems solution for multiphase flow problems in the INMOST framework, (Russian Supercomputing Days (2015)), 96-103
[28] Li, N.; Saad, Y.; Chow, E., Crout versions of ILU for general sparse matrices, SIAM J. Sci. Comput., 25, 2, 716-728 (2003) · Zbl 1042.65025
[29] Duff, I. S.; Koster, J., The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20, 4, 889-901 (1999) · Zbl 0947.65048
[30] Polubarinova-Koch, P. I., Theory of Ground Water Movement (2015), Princeton University Press
[31] INM RAS cluster (2020), http://cluster2.inm.ras.ru/en/, Accessed: 2020-05-22
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.