×

zbMATH — the first resource for mathematics

Preconditioning strategies for vectorial finite element linear systems arising from phase-field models for fracture mechanics. (English) Zbl 07337756
Summary: Phase-field models are frequently adopted to simulate fracture mechanics problems in the context of the finite element method. To depict fracture, this method involves solving a coupled set of Helmholtz-like damage-field equation and augmented linear momentum balance equation. Solutions to these coupled equations are then used as descriptions of crack propagation phenomena within solids. However, this method imposes a constrain of using extremely fine meshing for properly predicting cracks. For practical problems of interest, this very often leads to linear systems with large sizes that have to be repetitively assembled and solved. As such, iterative solution procedures such as the Krylov subspace-based methods for solving these large linear systems within the framework of serial/parallel computing environments become mandatory to obtain results in a feasible time. In this work, the vectorial finite discretization for a hybrid phase-field formulation – a monolithic solving scheme – is presented. The underlying nonlinearity present in the coupled set of equations of the hybrid phase-field model is dealt through Picard iteration that helps to preserve the symmetry of the linearized system to solve. Due to the symmetric positive definite nature of the finite element linear systems obtained for this problem, the conjugate gradient method makes a standard choice of iterative solution algorithm. In this article, to improve convergence rates, consequently time to solution, of the conjugate gradient method applied to crack propagation problems, different preconditioning strategies are analyzed, tuned, and discussed. Brittle fracture benchmarks are used to measure the performance of preconditioners which are then applied to massively parallel simulations with millions of unknowns. A series of numerical experiments show that the algebraic multigrid preconditioner is well suited for solving the phase-field model for fracture, being superior to the Jacobi and the block Jacobi preconditioning in all regards: ease of solving the problem, iterations to converge, time to solution, and parallel scaling on more than a thousand processes.
MSC:
74-XX Mechanics of deformable solids
65-XX Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[2] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[3] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 1-3, 5-148 (2008) · Zbl 1176.74018
[4] Amor, H.; Marigo, J.-J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[5] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[6] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022
[7] Ambati, M.; Gerasimov, T.; Lorenzis, L. D., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2014) · Zbl 1398.74270
[8] Miehe, C.; Hofacker, M.; Schänzel, L.-M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[9] Alessi, R.; Marigo, J.-J.; Vidoli, S., Gradient damage models coupled with plasticity: Variational formulation and main properties, Mech. Mater., 80, 351-367 (2015)
[10] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 5, 1017-1040 (2015) · Zbl 1329.74018
[11] Miehe, C.; Schänzel, L.-M., Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65, 93-113 (2014) · Zbl 1323.74012
[12] Borden, M. J.; Hughes, T. J.; Landis, C. M.; Anvari, A.; Lee, I. J., Phase-field formulation for ductile fracture, (Advances in Computational Plasticity (2018), Springer), 45-70
[13] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95 (2012) · Zbl 1253.74089
[14] Hofacker, M.; Miehe, C., Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, Int. J. Fract., 178, 1-2, 113-129 (2012)
[15] Verhoosel, C. V.; de Borst, R., A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg., 96, 1, 43-62 (2013) · Zbl 1352.74029
[16] May, S.; Vignollet, J.; De Borst, R., A numerical assessment of phase-field models for brittle and cohesive fracture: \( \Gamma \)-convergence and stress oscillations, Eur. J. Mech. A Solids, 52, 72-84 (2015) · Zbl 1406.74599
[17] Kuhn, C.; Müller, R., Phase field simulation of thermomechanical fracture, (PAMM: Proceedings in Applied Mathematics and Mechanics, Vol. 9 (2009), Wiley Online Library), 191-192
[18] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput. Mech., 57, 1, 149-167 (2016) · Zbl 1381.74181
[19] Nguyen, T. T.; Yvonnet, J.; Bornert, M.; Chateau, C.; Sab, K.; Romani, R.; Le Roy, R., On the choice of parameters in the phase field method for simulating crack initiation with experimental validation, Int. J. Fract., 197, 2, 213-226 (2016)
[20] Pham, K. H.; Ravi-Chandar, K.; Landis, C. M., Experimental validation of a phase-field model for fracture, Int. J. Fract., 205, 1, 83-101 (2017)
[21] Wu, J.-Y.; Nguyen, V. P.; Nguyen, C. T.; Sutula, D.; Bordas, S.; Sinaie, S., Phase field modeling of fracture, Adv. Appl. Mech.: Multi-Scale Theory Comput., 52 (2018)
[22] Pijaudier-Cabot, G.; Bažant, Z. P., Nonlocal damage theory, J. Eng. Mech., 113, 10, 1512-1533 (1987)
[23] Bažant, Z. P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Eng. Mech., 128, 11, 1119-1149 (2002)
[24] Moës, N.; Stolz, C.; Bernard, P.-E.; Chevaugeon, N., A level set based model for damage growth: The thick level set approach, Internat. J. Numer. Methods Engrg., 86, 3, 358-380 (2011) · Zbl 1235.74302
[25] Giry, C.; Dufour, F.; Mazars, J., Stress-based nonlocal damage model, Int. J. Solids Struct., 48, 25, 3431-3443 (2011)
[26] Rastiello, G.; Giry, C.; Gatuingt, F.; Desmorat, R., From diffuse damage to strain localization from an Eikonal Non-Local (ENL) Continuum Damage model with evolving internal length, Comput. Methods Appl. Mech. Engrg., 331, 650-674 (2018) · Zbl 1439.74029
[27] Frémond, M.; Nedjar, B., Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., 33, 8, 1083-1103 (1996) · Zbl 0910.73051
[28] Peerlings, R.; Geers, M.; de Borst, R.; Brekelmans, W., A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., 38, 44-45, 7723-7746 (2001) · Zbl 1032.74008
[29] de Borst, R.; Verhoosel, C. V., Gradient damage vs phase-field approaches for fracture: Similarities and differences, Comput. Methods Appl. Mech. Engrg., 312, 78-94 (2016) · Zbl 1439.74347
[30] Mandal, T. K.; Nguyen, V. P.; Heidarpour, A., Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study, Eng. Fract. Mech., 207, 48-67 (2019)
[31] Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y., Vectorial finite elements for solving the radiative transfer equation, J. Quant. Spectrosc. Radiat. Transfer, 212, 59-74 (2018)
[32] Bilgen, C.; Kopaničáková, A.; Krause, R.; Weinberg, K., A phase-field approach to conchoidal fracture, Meccanica, 53, 6, 1203-1219 (2017) · Zbl 1390.74167
[33] Hestenes, M. R.; Stiefel, E., Methods of Conjugate Gradients for Solving Linear Systems, Vol. 49 (1952), NBS Washington, DC · Zbl 0048.09901
[34] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[35] Jodlbauer, D.; Langer, U.; Wick, T., Matrix-free multigrid solvers for phase-field fracture problems (2019), arXiv e-prints, 54: arXiv:1902.08112
[36] Farrell, P. E.; Maurini, C., Linear and nonlinear solvers for variational phase-field models of brittle fracture, Internat. J. Numer. Methods Engrg., 109, 648-667 (2017)
[37] Paige, C. C.; Saunders, M. A., Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, 4, 617-629 (1975) · Zbl 0319.65025
[38] Heister, T.; Wick, T., Parallel solution, adaptivity, computational convergence, and open-source code of 2D and 3D pressurized phase-field fracture problems, (PAMM: Proceedings in Applied Mathematics and Mechanics, Vol. 18 (2018), Wiley Online Library), Article e201800353 pp.
[39] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 3, 411-430 (2007) · Zbl 1130.74040
[40] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg., 312, 276-303 (2016) · Zbl 1439.74349
[41] Liu, G.; Li, Q.; Msekh, M. A.; Zuo, Z., Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., 121, 35-47 (2016)
[42] Wick, T., Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput. Methods Appl. Mech. Engrg., 325, 577-611 (2017) · Zbl 1439.74375
[43] Xu, J.; Zikatanov, L., Algebraic multigrid methods, Acta Numer., 26, 591-721 (2017) · Zbl 1378.65182
[44] Stüben, K., A review of algebraic multigrid, (Numerical Analysis: Historical Developments in the 20th Century (2001), Elsevier), 331-359 · Zbl 0979.65111
[45] Wu, J.-Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
[46] Wu, J.-Y.; Nguyen, V. P., A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, 20-42 (2018)
[47] Kopaničáková, A.; Krause, R., A recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 360, Article 112720 pp. (2020) · Zbl 1441.74208
[48] Doan, D. H.; Bui, T. Q.; Duc, N. D.; Fushinobu, K., Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy, Composites B, 99, 266-276 (2016)
[49] Jeong, H.; Signetti, S.; Han, T.-S.; Ryu, S., Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation, Comput. Mater. Sci., 155, 483-492 (2018)
[50] Hirshikesh, H.; Natarajan, S.; Annabattula, R. K., A FEniCS implementation of the phase field method for quasi-static brittle fracture, Front. Struct. Civ. Eng., 13, 2, 380-396 (2018)
[51] Molnár, G.; Gravouil, A., 2D And 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., 130, 27-38 (2017)
[52] Vignollet, J.; May, S.; De Borst, R.; Verhoosel, C. V., Phase-field models for brittle and cohesive fracture, Meccanica, 49, 11, 2587-2601 (2014)
[53] Alexander, J.; Yorke, J. A., The homotopy continuation method: numerically implementable topological procedures, Trans. Amer. Math. Soc., 242, 271-284 (1978) · Zbl 0424.58003
[54] Grama, A.; Kumar, V.; Gupta, A.; Karypis, G., Introduction to Parallel Computing (2003), Pearson Education
[55] Málek, J.; Strakos, Z., Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs, Vol. 1 (2014), SIAM
[56] Benzi, M., Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182, 2, 418-477 (2002) · Zbl 1015.65018
[57] Balay, S.; Abhyankar, S.; Adams, M.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W.; Karpeyev, D.; Kaushik, D.; Knepley, M.; May, D.; Curfman McInnes, L.; Mills, R.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Users ManualTechnical Report (2019), Argonne National Laboratory
[58] Dupont, T.; Kendall, R. P.; Rachford, H., An approximate factorization procedure for solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 5, 3, 559-573 (1968) · Zbl 0174.47603
[59] Kershaw, D. S., The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations, J. Comput. Phys., 26, 1, 43-65 (1978) · Zbl 0367.65018
[60] Ruge, J. W.; Stüben, K., Algebraic multigrid, (Multigrid Methods (1987), SIAM), 73-130
[61] Jones, J. E.; Vassilevski, P. S., AMGE based on element agglomeration, SIAM J. Sci. Comput., 23, 1, 109-133 (2001) · Zbl 0992.65140
[62] Vaněk, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 3, 179-196 (1996) · Zbl 0851.65087
[63] Baker, A. H.; Falgout, R. D.; Kolev, T. V.; Yang, U. M., Multigrid smoothers for ultraparallel computing, SIAM J. Sci. Comput., 33, 5, 2864-2887 (2011) · Zbl 1237.65032
[64] Baker, A. H.; Falgout, R. D.; Kolev, T. V.; Yang, U. M., Multigrid Smoothers for Ultra-Parallel Computing: Additional Theory and DiscussionTechnical Report (2011), Lawrence Livermore National Lab.(LLNL): Lawrence Livermore National Lab.(LLNL) Livermore, CA (United States)
[65] Gropp, W. D.; Lusk, E.; Skjellum, A., Using MPI: Portable Parallel Programming with the Message-Passing Interface, Vol. 1 (1999), MIT press
[66] Geuzaine, C.; Remacle, J. F., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[67] Karypis, G.; Schloegel, K.; Kumar, V., Parmetis: Parallel Graph Partitioning and Sparse Matrix Ordering Library, Version 1.0, 22 (1997), Dept. of Computer Science, University of Minnesota
[68] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-4, 251-266 (2012) · Zbl 1266.68090
[69] Ahrens, J.; Geveci, B.; Law, C.; Hansen, C.; Johnson, C., Paraview: An end-user tool for large-data visualization, Vis. Handb., 717 (2005)
[70] Hirshikesh, J.; Pramod, A.; Annabattula, R.; Ooi, E.; Song, C.; Natarajan, S., Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 355, 284-307 (2019) · Zbl 1441.74206
[71] Basermann, A.; Reichel, B.; Schelthoff, C., Preconditioned CG methods for sparse matrices on massively parallel machines, Parallel Comput., 23, 3, 381-398 (1997) · Zbl 0907.68027
[72] Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y., Preconditioned Krylov subspace methods for solving radiative transfer problems with scattering and reflection, Comput. Math. Appl., 77, 6, 1453-1465 (2019) · Zbl 1442.65345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.