×

Statistical characterization and reconstruction of heterogeneous microstructures using deep neural network. (English) Zbl 07337796

Summary: Heterogeneous materials, whether natural or artificial, are usually composed of distinct constituents present in complex microstructures with discontinuous, irregular and hierarchical characteristics. For many heterogeneous materials, such as porous media and composites, the microstructural features are of fundamental importance for their macroscopic properties. This paper presents a novel method to statistically characterize and reconstruct random microstructures through a deep neural network (DNN) model, which can be used to study the microstructure-property relationships. In our method, the digital microstructure image is assumed to be a stationary Markov random field (MRF), and local patterns covering the basic morphological features are collected to train a DNN model, after which statistically equivalent samples can be generated through a DNN-guided reconstruction procedure. Furthermore, to overcome the short-distance limitation associated with the MRF assumption, a multi-level approach is developed to preserve the long-distance morphological features of heterogeneous microstructures. A large number of tests have been conducted to compare the reconstructed and target microstructures in both morphological characteristics and physical properties, and good agreements are observed in all test cases. The proposed method is efficient, accurate, versatile, and especially beneficial to the statistical reconstruction of 2D/3D microstructures with long-distance correlations.

MSC:

94-XX Information and communication theory, circuits
74-XX Mechanics of deformable solids

Software:

darch; TauFactor; PRMLT
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Vol. 16 (2013), Springer Science & Business Media
[2] Berg, C. F., Permeability description by characteristic length, tortuosity, constriction and porosity, Transp. Porous Media, 103, 3, 381-400 (2014)
[3] Gupta, A.; Cecen, A.; Goyal, S.; Singh, A. K.; Kalidindi, S. R., Structure-property linkages using a data science approach: application to a non-metallic inclusion/steel composite system, Acta Mater., 91, 239-254 (2015)
[4] Brandon, D.; Kaplan, W. D., Microstructural Characterization of Materials (2013), John Wiley & Sons
[5] Yang, X.-Y.; Chen, L.-H.; Li, Y.; Rooke, J. C.; Sanchez, C.; Su, B.-L., Hierarchically porous materials: synthesis strategies and structure design, Chem. Soc. Rev., 46, 2, 481-558 (2017)
[6] Vogel, H.-J.; Weller, U.; Schlüter, S., Quantification of soil structure based on minkowski functions, Comput. Geosci., 36, 10, 1236-1245 (2010)
[7] Stutzman, P., Scanning electron microscopy imaging of hydraulic cement microstructure, Cem. Concr. Compos., 26, 8, 957-966 (2004)
[8] Schlüter, S.; Sheppard, A.; Brown, K.; Wildenschild, D., Image processing of multiphase images obtained via x-ray microtomography: a review, Water Resour. Res., 50, 4, 3615-3639 (2014)
[9] Yang, M.; Nagarajan, A.; Liang, B.; Soghrati, S., New algorithms for virtual reconstruction of heterogeneous microstructures, Comput. Methods Appl. Mech. Engrg., 338, 275-298 (2018) · Zbl 1440.74482
[10] Wu, K.; Van Dijke, M. I.; Couples, G. D.; Jiang, Z.; Ma, J.; Sorbie, K. S.; Crawford, J.; Young, I.; Zhang, X., 3d stochastic modelling of heterogeneous porous media-applications to reservoir rocks, Transp. Porous Media, 65, 3, 443-467 (2006)
[11] Ju, Y.; Zheng, J.; Epstein, M.; Sudak, L.; Wang, J.; Zhao, X., 3d numerical reconstruction of well-connected porous structure of rock using fractal algorithms, Comput. Methods Appl. Mech. Engrg., 279, 212-226 (2014) · Zbl 1423.76426
[12] Yeong, C.; Torquato, S., Reconstructing random media, Phys. Rev. E, 57, 1, 495 (1998)
[13] Quiblier, J. A., A new three-dimensional modeling technique for studying porous media, J. Colloid Interface Sci., 98, 1, 84-102 (1984)
[14] Feng, J.; Li, C.; Cen, S.; Owen, D., Statistical reconstruction of two-phase random media, Comput. Struct., 137, 78-92 (2014)
[15] Feng, J.; Cen, S.; Li, C.; Owen, D., Statistical reconstruction and karhunen-loève expansion for multiphase random media, Internat. J. Numer. Methods Engrg., 105, 1, 3-32 (2016) · Zbl 1358.74004
[16] Øren, P.-E.; Bakke, S., Process based reconstruction of sandstones and prediction of transport properties, Transp. Porous Media, 46, 2-3, 311-343 (2002)
[17] Okabe, H.; Blunt, M. J., Pore space reconstruction using multiple-point statistics, J. Pet. Sci. Eng., 46, 1-2, 121-137 (2005)
[18] Tahmasebi, P.; Sahimi, M., Reconstruction of three-dimensional porous media using a single thin section, Phys. Rev. E, 85, 6, Article 066709 pp. (2012)
[19] Liu, X.; Shapiro, V., Random heterogeneous materials via texture synthesis, Comput. Mater. Sci., 99, 177-189 (2015)
[20] Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C., Machine learning in materials informatics: recent applications and prospects, NPJ Comput. Mater., 3, 1, 54 (2017)
[21] Agrawal, A.; Choudhary, A., Deep materials informatics: Applications of deep learning in materials science, MRS Commun., 1-14 (2019)
[22] Caers, J., Geostatistical reservoir modelling using statistical pattern recognition, J. Pet. Sci. Eng., 29, 3-4, 177-188 (2001)
[23] Sundararaghavan, V.; Zabaras, N., Classification and reconstruction of three-dimensional microstructures using support vector machines, Comput. Mater. Sci., 32, 2, 223-239 (2005)
[24] Bostanabad, R.; Bui, A. T.; Xie, W.; Apley, D. W.; Chen, W., Stochastic microstructure characterization and reconstruction via supervised learning, Acta Mater., 103, 89-102 (2016)
[25] Bostanabad, R.; Chen, W.; Apley, D., Characterization and reconstruction of 3d stochastic microstructures via supervised learning, J. Microsc., 264, 3, 282-297 (2016)
[26] Cang, R.; Xu, Y.; Chen, S.; Liu, Y.; Jiao, Y.; Yi Ren, M., Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design, J. Mech. Des., 139, 7 (2017)
[27] Mosser, L.; Dubrule, O.; Blunt, M. J., Reconstruction of three-dimensional porous media using generative adversarial neural networks, Phys. Rev. E, 96, 4, Article 043309 pp. (2017)
[28] Li, X.; Zhang, Y.; Zhao, H.; Burkhart, C.; Brinson, L. C.; Chen, W., A transfer learning approach for microstructure reconstruction and structure-property predictions, Sci. Rep., 8 (2018)
[29] Wang, Y.; Arns, C. H.; Rahman, S. S.; Arns, J.-Y., Porous structure reconstruction using convolutional neural networks, Math. Geosci., 50, 7, 781-799 (2018) · Zbl 1402.86005
[30] Li, S. Z., Markov Random Field Modeling in Image Analysis (2009), Springer Science & Business Media · Zbl 1183.68691
[31] Wei, L.-Y.; Levoy, M., Fast texture synthesis using tree-structured vector quantization, (Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), ACM Press/Addison-Wesley Publishing Co.), 479-488
[32] Bishop, C. M., Pattern Recognition and Machine Learning (2006), Springer · Zbl 1107.68072
[33] Schmidhuber, J., Deep learning in neural networks: An overview, Neural Netw., 61, 85-117 (2015)
[34] Hinton, G. E.; Salakhutdinov, R. R., Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507 (2006) · Zbl 1226.68083
[35] Xu, J.; Xiang, L.; Liu, Q.; Gilmore, H.; Wu, J.; Tang, J.; Madabhushi, A., Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images, IEEE Trans. Med. Imaging, 35, 1, 119-130 (2015)
[36] Wang, Y.; Yao, H.; Zhao, S., Auto-encoder based dimensionality reduction, Neurocomputing, 184, 232-242 (2016)
[37] Corson, P. B., Correlation functions for predicting properties of heterogeneous materials. ii. Empirical construction of spatial correlation functions for two-phase solids, J. Appl. Phys., 45, 7, 3165-3170 (1974)
[38] Burt, P.; Adelson, E., The laplacian pyramid as a compact image code, IEEE Trans. Commun., 31, 4, 532-540 (1983)
[39] Lindquist, W. B.; Venkatarangan, A.; Dunsmuir, J.; Wong, T.-f., Pore and throat size distributions measured from synchrotron x-ray tomographic images of fontainebleau sandstones, J. Geophys. Res.: Solid Earth, 105, B9, 21509-21527 (2000)
[40] Cooper, S.; Bertei, A.; Shearing, P.; Kilner, J.; Brandon, N., Taufactor: An open-source application for calculating tortuosity factors from tomographic data, SoftwareX, 5, 203-210 (2016)
[41] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. M., The lattice boltzmann method, Springer Int. Publ., 10 (2017), 978-3
[42] Fu, J.; Dong, J.; Wang, Y.; Ju, Y.; Owen, D.; Li, C., Resolution effect: An error correction model for intrinsic permeability of porous media estimated from lattice boltzmann method, Transp. Porous Media, 132, 3, 627-656 (2020)
[43] LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, Vol. 98 (2007), Siam
[44] Degruyter, W.; Burgisser, A.; Bachmann, O.; Malaspinas, O., Synchrotron x-ray microtomography and lattice boltzmann simulations of gas flow through volcanic pumices, Geosphere, 6, 5, 470-481 (2010)
[45] Grathwohl, P., Diffusion in Natural Porous Media: Contaminant Transport, Sorption/desorption and Dissolution Kinetics, Vol. 1 (2012), Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.