zbMATH — the first resource for mathematics

Multipatch isogeometric mortar methods for thick shells. (English) Zbl 07337898
Summary: This paper introduces, analyzes and validates isogeometric mortar methods for the solution of thick shells problems which are set on a multipatch geometry. A particular attention will be devoted to the introduction of a proper formulation of the coupling conditions, with a particular interest on augmented lagrangian formulations, to the choice and validation of mortar spaces, and to the derivation of adequate integration rules. The relevance of the proposed approach is assessed numerically on various significative examples.
74-XX Mechanics of deformable solids
65-XX Numerical analysis
Full Text: DOI
[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley · Zbl 1378.65009
[3] Piegl, L.; Tiller, W., The \(\mathcal{NURBS}\) Book (1995), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[4] Ruess, M.; Schillinger, D.; Özcan, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[5] Breitenberger, M.; Apostolatos, A.; Philipp, B.; Wüchner, R.; Bletzinger, K.-U., Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 284, 401-457 (2015) · Zbl 1425.65030
[6] Guo, Y.; Heller, J.; Hughes, T. J.R.; Ruess, M.; Schillinger, D., Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP exchange format, Comput. Methods Appl. Mech. Engrg., 336, 39-79 (2018) · Zbl 1440.74397
[7] Teschemacher, T.; Bauer, A. M.; Oberbichler, T.; Breitenberger, M.; Rossi, R.; Wüchner, R.; Bletzinger, K.-U., Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis, Adv. Model. Simul. Eng. Sci., 5, 1, 19 (2018)
[8] Kiendl, J.; Bazilevs, Y.; Hsu, M.-C.; Wüchner, R.; Bletzinger, K.-U., The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Engrg., 199, 2403-2416 (2010) · Zbl 1231.74482
[9] Cohen, E.; Lyche, T.; Riesenfeld, R., Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics, Comput. Graph. Image Process., 14, 2, 87-111 (1980)
[10] Lei, Z.; Gillot, F.; Jezequel, L., A \(C^0 / G^1\) multiple patches connection method in isogeometric analysis, Appl. Math. Model., 39, 15, 4405-4420 (2015) · Zbl 1443.74262
[11] Apostolatos, A.; Schmidt, R.; Wüchner, R.; Bletzinger, K.-U., A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, Internat. J. Numer. Methods Engrg., 97, 473-504 (2014) · Zbl 1352.74315
[12] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 1163-1182 (2014) · Zbl 1398.74379
[13] De Lorenzis, L.; Wriggers, P.; Zavarise, G., A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 49, 1, 1-20 (2012) · Zbl 1356.74146
[14] Temizer, I.; Wriggers, P.; Hughes, T. J.R., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 209-212, 115-128 (2012) · Zbl 1243.74130
[15] Kim, J.-Y.; Youn, S.-K., Isogeometric contact analysis using mortar method, Internat. J. Numer. Methods Engrg., 89, 12, 1559-1581 (2012) · Zbl 1242.74131
[16] Dittmann, M.; Franke, M.; Temizer, I.; Hesch, C., Isogeometric Analysis and thermomechanical Mortar contact problems, Comput. Methods Appl. Mech. Engrg., 274, 192-212 (2014) · Zbl 1296.74072
[17] Seitz, A.; Farah, P.; Kremheller, J.; Wohlmuth, B. I.; Wall, W. A.; Popp, A., Isogeometric dual mortar methods for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 301, 259-280 (2016) · Zbl 1425.74490
[18] Brivadis, E.; Buffa, A.; Wohlmuth, B.; Wunderlich, L., Isogeometric mortar methods, Comput. Methods Appl. Mech. Engrg., 284, 292-319 (2015) · Zbl 1425.65150
[19] Adam, C.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells, Comput. Methods Appl. Mech. Engrg., 284, 106-137 (2015) · Zbl 1423.74860
[20] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276-289 (2010) · Zbl 1227.74107
[21] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 1367-1378 (2011) · Zbl 1228.74077
[22] Chapelle, D.; Bathe, K.-J., The Finite Element Analysis of Shells - Fundamentals (2011), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1103.74003
[23] Ben Belgacem, F., The mortar finite element method with Lagrange multipliers, Numer. Math., 84, 173-197 (1999) · Zbl 0944.65114
[24] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192 (1972) · Zbl 0258.65108
[25] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer · Zbl 0788.73002
[26] Ben Belgacem, F.; Maday, Y., The mortar element method for three dimensional finite elements, RAIRO Modélisation Math. Anal. Numéri., 31, 289-302 (1997) · Zbl 0868.65082
[27] Fritz, A.; Hüeber, S.; Wohlmuth, B. I., A comparison of mortar and Nitsche techniques for linear elasticity, Calcolo, 41, 115-137 (2004) · Zbl 1099.65123
[28] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numer., 8, 129-151 (1974) · Zbl 0338.90047
[29] Bathe, K.-J., The inf-sup condition and its evaluation for mixed finite element methods, Comput. Struct., 79, 243-252 (2001)
[30] Glowinski, R.; Le Tallec, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics (1989), Studies in Applied and Numerical Mathematics · Zbl 0698.73001
[31] Le Tallec, P.; Sassi, T., Domain decomposition with nonmatching grids: Augmented Lagrangian approach, Math. Comp., 64, 1367-1396 (1995) · Zbl 0849.65087
[32] Babuška, I., The finite element method with penalty, Math. Comp., 27, 221-228 (1973) · Zbl 0299.65057
[33] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The Finite Element Method: Its Basis and Fundamentals (2005), Elsevier · Zbl 1307.74005
[34] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 1031-1090 (2006) · Zbl 1103.65113
[35] Braess, D.; Dahmen, W., Stability estimates of the mortar finite element method for 3-dimensional problems, East-West J. Numer. Math., 6, 249-263 (1998) · Zbl 0922.65072
[36] Braess, D.; Dahmen, W.; Wieners, C., A multigrid algorithm for the mortar finite element method, SIAM J. Numer. Anal., 37, 48-69 (1999) · Zbl 0942.65139
[37] Wohlmuth, B. I., A residual based error estimator for mortar finite element discretizations, Numer. Math., 84, 143-171 (1999) · Zbl 0962.65090
[38] Wohlmuth, B. I., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 3, 989-1012 (2000) · Zbl 0974.65105
[39] Malkus, D. S., Eigenproblems associated with the discrete LBB condition for incompressible finite elements, Internat. J. Engrg. Sci., 19, 1299-1310 (1981) · Zbl 0457.73051
[40] Melenk, J. M.; Wohlmuth, B., Quasi-Optimal approximation of surface based Lagrange multipliers in finite element methods, SIAM J. Numer. Anal., 50, 4, 2064-2087 (2012) · Zbl 1262.65159
[41] Farin, G., Curves and Surfaces for Computer-aIded Geometric Design. A Practical Guide (1997), Academic Press: Academic Press San Diego · Zbl 0919.68120
[42] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), John Wiley & Sons · Zbl 0959.74001
[43] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications · Zbl 1191.74002
[44] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Methods Appl. Mech. Engrg., 199, 374-382 (2010) · Zbl 1227.74068
[45] Rank, E.; Krause, R.; Preusch, K., On the accuracy of p-version elements for the Reissner Mindlin plate problem, Internat. J. Numer. Methods Engrg., 43, 51-67 (1998) · Zbl 0937.74069
[46] Lam, S. K.; Pitrou, A.; Seibert, S., Numba: A LLVM-based Python JIT compiler, (Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15 (2015), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 1-6
[47] Jones, E.; Oliphant, T.; Peterson, P., SciPy: Open source scientific tools for Python (2001)
[48] Schenk, O.; Gärtner, K.; Fichtner, W.; Stricker, A., PARDISO: A high-performance serial and parallel sparse linear solver in semiconductor device simulation, Future Gener. Comput. Syst., 18, 69-78 (2001) · Zbl 1032.68172
[49] Lehoucq, R. B.; Sorensen, D. C.; Yang, C., ARPACK Users Guide: Solution of Large Scale Eigenvalue Problems By Implicitly Restarted Arnoldi Methods (1998), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 0901.65021
[50] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (Engineering Societies Monographs) (1959), McGraw-Hill College · Zbl 0114.40801
[51] Gould, P. L., Introduction to Linear Elasticity (2013), Springer-Verlag: Springer-Verlag New York · Zbl 1280.74001
[52] Harris, C. M.; Piersol, A. G., Harris’ Shock and Vibration Handbook (2002), McGraw-Hill: McGraw-Hill New York
[53] Belytschko, T.; Stolarski, H.; Liu, W. K.; Carpenter, N.; Ong, J. S.-J.., Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Engrg., 51, 221-258 (1985) · Zbl 0581.73091
[54] MacNeal, R. H.; Harder, R. L., A proposed standard set of problems to test finite element accuracy, Finite Elem. Anal. Des., 1, 3-20 (1985)
[55] Timoshenko, S.; Goodier, J. N., Theory of elasticity (1951), McGraw-Hill: McGraw-Hill New York · Zbl 0045.26402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.