Factorisability and the arithmetic of wildly ramified Galois extensions. (English) Zbl 0734.11065

Summary: In this note we briefly describe an interesting arithmetical application of a rather novel approach, developed in the author’s paper [J. Algebra 134, No. 2, 257–270 (1990; Zbl 0734.11064)] reviewed above, to the problem of determining the local structure of modules over certain abelian group rings. Proofs are omitted.


11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
11S23 Integral representations
11S15 Ramification and extension theory
11S20 Galois theory


Zbl 0734.11064
Full Text: DOI Numdam EuDML


[1] Bergé, A-M., Arithmétique d’une extension à groupe d’inertie cyclique, Ann. Inst. Fourier28 (1978), 17-44.. · Zbl 0377.12009
[2] Burns, D., Factorisabilty, group lattices, and Galois module structure. to appear in Jnl. of Algebra. · Zbl 0734.11064
[3] Ferton, M-J., Sur les idéaux d’une extension cyclique de degré premier d’un corps local, C.R.A.S. (1973). série A. · Zbl 0268.12006
[4] Fontaine, J-M., Groupes de ramification et représentations d’Artin, Ann. Scient. Ec. Norm. Sup.4 (1971), 337-392. 4-eme série. · Zbl 0232.12006
[5] Fröhlich, A., Module defect and factorisability, Illinois Jnl. Math.32.3 (1988), 407-421. · Zbl 0664.12007
[6] Fröhlich, A., L-values at zero and multiplicative Galois module structure. to appear in Jnl. reine und angew. Math. · Zbl 0693.12012
[7] Nelson, A., Monomial representations and Galois module structure, Ph.D Thesis. King’s College, University of London, 1979.
[8] Wilson, S.M.J., Structure Galoisienne et ramification sauvage, Sém. de Théorie des Nombres de Bordeaux (1986-1987). · Zbl 0682.12004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.