zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On polynomials orthogonal with respect to certain Sobolev inner products. (English) Zbl 0734.42016
Orthogonal polynomials $p\sp{\lambda}\sb n(x)$ for the Sobolev inner product $$ <f,g>=\int f(x)g(x)d\phi (x)+\lambda \int f'(x)g'(x)d\psi (x) $$ are investigated. An interesting notion of coherent pairs of Borel measures $\phi$ and $\psi$ is introduced. If $p\sb n(x)$ are the orthogonal polynomials with respect to the measure $\phi$, then $(\phi,\psi)$ is a coherent pair when there exist non-zero constants $C\sb k$ such that $$ \int p'\sb n(x)p'\sb m(x)d\psi (x)=\frac{d\sb{\min (m,n)}}{C\sb mC\sb n}. $$ It is shown that for a coherent pair ($\phi$,$\psi$) the Sobolev orthogonal polynomials $p\sp{\lambda}\sb n(x)$ can be expanded in terms of the orthogonal polynomials $p\sb n(x)$ in such a way that the expansion coefficients (except the last) are independent of n and themselves orthogonal polynomials in the variable $\lambda$. Several examples are worked out and an application involving the evaluation of Sobolev-Fourier coefficients is given.

42C05General theory of orthogonal functions and polynomials
46E35Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI
[1] Althammer, P.: Eine erweiterung des orthogonalitätsbegriffes bei polynomen und deren anwendung auf die beste approximation. J. reine angew. Math. 211, 192-204 (1962) · Zbl 0108.27204
[2] Askey, R.; Ismail, M.: Recurrence relations, continued fractions and orthogonal polynomials. Mem. amer. Math. soc. 319 (1984) · Zbl 0548.33001
[3] Bavinck, H.; Meijer, H. G.: Orthogonal polynomials with respect to a symmetric inner product involving derivatives. Appl. anal. 33, 103-117 (1989) · Zbl 0648.33007
[4] Brenner, J.: Über eine erweiterung des orthogonalitätsbegriffes bei polynomen in einer und zwei variablen. Ph.d. thesis (1969)
[5] Brenner, J.: Über eine erweiterung des orthogonalitätsbegriffes bei polynomen. Constructive theory of functions (1972) · Zbl 0234.33016
[6] Canuto, C.; Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. comp. 38, 67-88 (1982) · Zbl 0567.41008
[7] Chihara, T. S.: An introduction to orthogonal polynomials. (1978) · Zbl 0389.33008
[8] Cohen, E. A.: Zero distribution and behavior of orthogonal polynomials in the Sobolev space W1,2[-1, 1]. SIAM J. Math. anal. 6, 105-116 (1975) · Zbl 0272.42013
[9] Gautschi, W.: Minimal solutions of three-term recurrence relations and orthogonal polynomials. Math. comp. 36, 547-554 (1981) · Zbl 0466.33008
[10] Gröbner, W.: Orthogonale polynomsysteme, die gleichzeitig mit $f(x)$ auch deren ableitung f’$(x)$ approximieren. Funktionalanalysis, approximationstheorie, numerische Mathematik (1965) · Zbl 0188.14001
[11] Hahn, W.: Über die jacobischen polynome und zwei verwandte polynomklassen. Math. Z. 39, 634-638 (1935) · Zbl 0011.06202
[12] Hahn, W.: Über orthogonalpolynome mit besonderen eigenschaften. E. B. Christoffel (1981) · Zbl 0473.33008
[13] Hahn, W.: Zur theorie der orthogonalpolynome. Forschungszentrum Graz, bericht nr. 190 (1983)
[14] Iserles, A.; Koch, P. E.; Nørsett, S. P.; Sanz-Serna, J. M.: Orthogonality and approximation in a Sobolev space. Algorithms for approximation (1990) · Zbl 0749.41030
[15] Kumar, R.: A class of quadrature formulas. Math. comp. 28, 769-778 (1974) · Zbl 0291.65005
[16] Kumar, R.: Certain Gaussian quadratures. J. ima 14, 175-182 (1974) · Zbl 0287.65015
[17] Koekoek, R.: Generalizations of Laguerre polynomials. Univ. of Delft tech. Rep. 89-51 (1989)
[18] Lewis, D. C.: Polynomial least square approximations. Amer. J. Math. 69, 273-278 (1947) · Zbl 0033.35603
[19] Littlejohn, L. L.; Everitt, W. N.; Williams, S. C.: Orthogonal polynomials in weighted Sobolev spaces. Orthogonal polynomials and their applications (1989) · Zbl 0676.33005
[20] Marcellan, F.; Ronveaux, A.: On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. Univ. of Namur tech. Report (1990) · Zbl 0732.42016
[21] Maroni, P.: Sur la suite des polynômes orthogonaux associée à la forme $u = {\delta}c + {\lambda}$(x - c)-1 L. Actas V simposium sobre polinomios ortogonales y aplication vigo (1988)
[22] Jr., T. E. Price: Orthogonal polynomials for nonclassical weight functions. SIAM J. Numer. anal. 16, 999-1006 (1979) · Zbl 0426.65008
[23] Rainville, E. D.: Special functions. (1960) · Zbl 0092.06503