Jolissaint, Paul; Valette, Alain Normes de Sobolev et convoluteurs bornés sur \(L^ 2(G)\). (Sobolev norms and bounded convolvers on \(L^ 2(G)\)). (French) Zbl 0734.43002 Ann. Inst. Fourier 41, No. 4, 797-822 (1991). A locally compact group G equipped with a length-function L has property (RD) with respect to L if any rapidly decreasing function on G defines a bounded convolver on \(L^ 2(G)\). We give a fairly general sufficient condition for the pair (G,L) to have property (RD). For such a pair, we characterize positive definite functions on G that are weakly associated to the left regular representation and, in the discrete case, we deal with approximation properties of the Fourier algebra of G. Reviewer: A.Valette (Neuchâtel) Cited in 6 Documents MSC: 43A35 Positive definite functions on groups, semigroups, etc. 43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc. 43A70 Analysis on specific locally compact and other abelian groups 46L05 General theory of \(C^*\)-algebras Keywords:locally compact group; length-function; rapidly decreasing function; bounded convolver; positive definite functions; left regular representation; Fourier algebra PDF BibTeX XML Cite \textit{P. Jolissaint} and \textit{A. Valette}, Ann. Inst. Fourier 41, No. 4, 797--822 (1992; Zbl 0734.43002) Full Text: DOI Numdam EuDML OpenURL References: [1] [A] , Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224. · Zbl 0194.15701 [2] [Bor] , Compact Clifford-Klein forms of symmetric spaces, Topology, 2 (1963), 111-122. · Zbl 0116.38603 [3] [Bou] , Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, 1968. [4] [Boz] , Remark on Herz-Schur multipliers on free groups, Math. Ann., 258 (1981), 11-15. · Zbl 0483.43004 [5] [BozJaSp] , et , Infinite Coxeter groups do not have Kazhdan’s property (T), J. Operator Theory, 19 (1988), 63-67. · Zbl 0662.20040 [6] [dCaHaa] et , Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math., 107 (1985), 455-500. · Zbl 0577.43002 [7] [CoMos] et , Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology, 29 (1990), 345-388. · Zbl 0759.58047 [8] [CoHaa] et , Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., 96 (1989), 507-549. · Zbl 0681.43012 [9] [CowHaaHo] , et , Almost L2 matrix coefficients, J. reine angew. Math., 387 (1988), 97-110. · Zbl 0638.22004 [10] [E] , L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236. · Zbl 0169.46403 [11] [FHarz] et , Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier, 24-3 (1974), 171-217. · Zbl 0265.43013 [12] [GhHarp] Sur les groupes hyperboliques d’après Mikhael Gromov, ouvrage collectif édité par E. Ghys et P. de la Harpe, Progress in Math. 83, Birkhäuser 1990. · Zbl 0731.20025 [13] [G] , Hyperbolic groups, in “Essays in group theory”, édité par S. M. Gersten (Springer, 1987), 75-263. [14] [Haa] , An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math., 50 (1979), 279-293. · Zbl 0408.46046 [15] [dHarp1] , Groupes de Coxeter infinis non affines, Expo. Math., 5 (1987), 91-96. · Zbl 0605.20049 [16] [dHarp2] , Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolissaint, C.R. Acad. Sci. Paris, Sér. I, 307 (1988), 771-774. · Zbl 0653.46059 [17] [dHarpV] et , La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989. · Zbl 0759.22001 [18] [Hel] , Groups and geometric analysis, Academic Press, 1984. [19] [Her] , Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24 (1974), 145-157. · Zbl 0287.43006 [20] [Jo1] , Rapidly decreasing functions in reduced C*-algebras of groups, Trans. Amer. Math. Soc., 317 (1990), 167-196. · Zbl 0711.46054 [21] [Jo2] , K-theory of reduced C*-algebras and rapidly decreasing functions on groups, K-theory, 2 (1989), 723-735. · Zbl 0692.46062 [22] [L] , Tensor products and nuclear C*-algebras, in “Operator algebras and applications”, Proc. Symp. Pure Math., 38 (vol. 1), Amer. Math. Soc., 1982, 379-399. · Zbl 0498.46044 [23] [Ma] , On the faithful representations of infinite groups by matrices, Amer. Math. Soc. Transl., 45 (1965), 1-18. · Zbl 0158.02905 [24] [Mou] , Hyperbolic Coxeter groups, PhD thesis, Ohio State University, 1988. [25] [Re] , Centralizers of the Fourier algebra of an amenable group, Proc. Amer. Math. Soc., 32 (1972), 539-542. · Zbl 0258.43010 [26] [Ro] , A non-extendible positive map on the reduced C*-algebra of a free group, Bull. London Math. Soc., 18 (1986), 389-391. · Zbl 0614.46048 [27] [RoSm] et , Liftings and extensions of maps on C*-algebras, J. Operator Theory, 21 (1988), 117-131. · Zbl 0699.46041 [28] [ScWal] et , Topological methods in group theory, in «Homological group theory», édité par C.T.C. Wall, London Math. Soc. Lecture Notes Series 36, Cambridge Univ. Press, 1979. · Zbl 0423.20023 [29] [Sk] , Approche de la conjecture de Novikov par la cohomologie cyclique [d’après A. Connes, M. Gromov et H. Moscovici], Sém. Bourbaki, Fév. 1991, Exposé 739. · Zbl 0749.58056 [30] [St] , Extension of positive maps into B(H), J. Funct. Anal., 66 (1986), 235-254. · Zbl 0637.46061 [31] [17] , Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Etudes Sci. Publ. Math., 5 (1960). · Zbl 0158.32901 [32] [T2] , Reductive groups over local fields, Proc. Symp. Pure Math. 33 (vol. 1), Amer. Math. Soc., 1979, 29-69. · Zbl 0415.20035 [33] [V] , Weak forms of amenability for split rank 1 p-adic groups, pré-publication 1990, à paraître dans «p-adic methods and applications», Oxford University Press. [34] [Was] , On tensor products of certain group C*-algebras, J. Funct. Anal., 23 (1976), 239-254. · Zbl 0358.46040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.