Characterization of nonsmooth functions through their generalized gradients. (English) Zbl 0734.49005

The work deals with the question: how to characterize a given class of real-valued locally Lipschitz functions f(x) in terms of Clarke’s generalized gradient \(\partial f(x)\). Conditions on \(\partial f(x)\) necessary and sufficient for f(x) to be (i) quasi-convex and (ii) the difference of convex functions are established. The paper also contains a review of known conditions on \(\partial f(x)\) (obtained by R. T. Rockafellar and J. P. Vial) necessary and sufficient for f(x) to belong to the classes of (iii) convex functions, (iv) pointwise supremum of \(C^ k\)-functions, \(k\geq 1\) and(v) semi-smooth functions.


49J52 Nonsmooth analysis
Full Text: DOI


[1] Bougeard M., Contribution à la théorie de MORSE en dimension finie (1978)
[2] DOI: 10.1090/S0002-9947-1975-0367131-6
[3] Clarke F.H., Nonsmooth analysis and optimization (1983) · Zbl 0582.49001
[4] DOI: 10.1016/0001-8708(81)90032-3 · Zbl 0463.49017
[5] Cornet B., Contribution à la théorie mathématique des mécaniques dynamiques d’allocation des ressources (1981)
[6] Crouzeix J.P., Contribution à l’étude des fonctions quasi-convexes (1977)
[7] Crouzeix, J.P. 1981.Some differentiability properties of quasi-convex functions on Rn, Edited by: Auslender, A., Oettli, W. and Stoer, J. Vol. 30, 9–20. Berlin: Springer-Verlag. Lectures Notes in Control and Information Sciences
[8] DOI: 10.1016/0041-5553(80)90269-4 · Zbl 0466.90068
[9] DOI: 10.1080/02331938308842828 · Zbl 0517.90065
[10] Diewert, W.E., Avriel, M. and Zang, I. 1979.Nine kinds of quasi-convexity and concavity, 72–79. Vancouver, Canada: University of British Columbia. Diss. Paper Dept. of Economics · Zbl 0483.26007
[11] Ellaia R., Séminaire d’Analyse Numérique, Toulouse pp 1– (1984)
[12] DOI: 10.1007/BF00941076 · Zbl 0568.90076
[13] Hassouni A., Sous-différentiels des fonctions quasi-convexes (1983)
[14] Hassouni A., Quasimonotone multifunction and applications to optimality conditions · Zbl 0758.49010
[15] Hartman P., Pacific J. Math pp 707– (1959)
[16] Hiriart-Urruty J.B., Soc. Math. France 60 pp 57– (1979)
[17] Hiriart-Urruty J.B.Generalized differentiability, duality and Optimization for problems dealing with differences of convex functionsPonstein J. Lectures Notes in Economics and Math. Systems 1984 256 37 70
[18] Hiriart-Urruty J.B., Séminaire d’Analyse Numérique pp 1– (1985)
[19] Janin R., Sur la dualité et la sensibilité dans les problèmes de programmation mathématiques (1974)
[20] Janin, R. 1982.Sur les multiapplications qui sont des gradients généralisés, Vol. 294, 115–117. Paris: C. R. Acad. Sc. · Zbl 0482.46030
[21] DOI: 10.1090/S0002-9947-1979-0546911-1
[22] Malivert C., Bull Soc. Math, de France 60 pp 113– (1979)
[23] Martos B., Nonlinear programming, Theory and method (1975) · Zbl 0357.90027
[24] DOI: 10.1137/0315061 · Zbl 0376.90081
[25] Minty G., Pacific J. Math 14 pp 243– (1964)
[26] Penot, J.P. 1974.Sous-differérentieis de fonctions numériques non convexes, Vol. 278, A, 1553–1555. Paris: C.R.A.S. · Zbl 0318.46055
[27] DOI: 10.1016/0022-1236(78)90030-7 · Zbl 0404.90078
[28] Pshenichnyi B.N., Necessary conditions for an extremum (1971) · Zbl 0764.90079
[29] Robert A.W., Convex functions (1973)
[30] Rockafellar R.T., Convex analysis (1970) · Zbl 0193.18401
[31] Rockafellar R.T., Colloque de la Chaire Ainsenstadt (1978)
[32] Rockafellar R.T., Progress in nondifferentiable optimization (1981)
[33] Shapiro A.Y., Yomdin On function represen table as a difference of two convex functions in inequality constrained optimization (1983)
[34] DOI: 10.1090/S0002-9947-1981-0597868-8
[35] DOI: 10.1287/moor.8.2.231 · Zbl 0526.90077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.