×

zbMATH — the first resource for mathematics

The weak coupling limit without rotating wave approximation. (English) Zbl 0734.60105
Summary: We investigate the behaviour, in the weak coupling limit, of a system interacting with a Boson reservoir without assuming the rotating wave approximation, i.e. we allow the system Hamiltonian to have a finite set of characteristic frequencies rather than a single one. Our main result is the proof that the weak coupling limit of the matrix elements with respect to suitable collective vectors of the solution of the Schrödinger equation in interaction representation (i.e. the wave operator at time t) exists and is the solution of a quantum stochastic differential equation driven by a family of independent quantum Brownian motions, one for each characteristic frequency of the system Hamiltonian.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] L. Accardi , Quantum Stochastic Process , Progress Phys. , Vol. 10 , 1985 , pp. 285 - 302 . MR 821302 | Zbl 0574.46059 · Zbl 0574.46059
[2] L. Accardi , A. Frigerio and Y.G. Lu , The Weak Coupling Limit Problem. Quantum Probability and its Applications IV , Lect. Notes Math. , No. 1396 , 1987 , pp. 20 - 58 , Springer . MR 1019565 | Zbl 0682.60092 · Zbl 0682.60092
[3] L. Accardi , A. Frigerio and Y.G. Lu , The Weak Coupling Limit as a Quantum Functional Central Limit , Comm. Math. Phys. , Vol. 131 , 1990 , pp 537 - 570 . Article | MR 1065896 | Zbl 0703.60096 · Zbl 0703.60096
[4] L. Accardi , A. Frigerio and Y.G. Lu , The Quantum Weak Coupling Limit (II): Langevin Equation and Finite Temperature Case , R.I.M.S . (submitted). Zbl 0846.60098 · Zbl 0846.60098
[5] L. Accardi , A. Frigerio and Y.G. Lu , The Weak Coupling Limit for Fermions , J. Math. Phys. , 1990 (to appear). MR 1091291 | Zbl 0735.60106 · Zbl 0735.60106
[6] L. Accardi , A. Frigerio and Y.G. Lu , Quantum Langevin Equation in the Weak Coupling Limit , Quantum Probability and its Applications V , No. 1442 , pp. 1 - 16 , Springer Lectures Notes in Math.. MR 1091291 | Zbl 0709.60066 · Zbl 0709.60066
[7] E.B. Davies , Markovian Master Equation , Comm. Math. Phys. , Vol. 39 , 1974 , pp. 91 - 110 . Article | MR 359633 | Zbl 0294.60080 · Zbl 0294.60080
[8] E.B. Davies , Markovian Master Equation II , Math. Ann. , Vol. 219 , 1976 , pp. 147 - 158 . MR 395638 | Zbl 0323.60061 · Zbl 0323.60061
[9] E.B. Davies , Markovian Master Equation III , Ann. Inst. H. Poincaré, B , Vol. 11 , 1975 , pp. 265 - 273 . Numdam | MR 395639 | Zbl 0323.60062 · Zbl 0323.60062
[10] A. Barchielli , Input and Output Channels in Quantum System and Quantum Stochastic Differential Equations , Lectures Notes in Math. , No. 1303 , 1988 , Springer . MR 985810 | Zbl 0636.60070 · Zbl 0636.60070
[11] C.W. Gardiner and M.J. Collet , Input and Output in Damped Quantum System: Quantum Stochastic Differential Equation and Master Equation , Phys. Rev. A , Vol. 31 , 1985 , pp. 3761 - 3774 . MR 791872
[12] J.V. Pulè , The Bloch Equations , Comm. Math. Phys. , Vol. 38 , 1974 , pp. 241 - 256 . Article | MR 359650
[13] L. Accardi , R. Alicki , A. Frigerio and Y.G. Lu , An Invitation to the Weak Coupling and Low Density Limits. Quantum Probability and its Applications VI , World Scientific Publishing , 1991 (to appear). MR 1149817 | Zbl 0927.60090 · Zbl 0927.60090
[14] R.L. Hudson and K.R. Parthasarathy , Quantum Ito’s Formula and Stochastic Evolutions , Comm. Math. Phys. , Vol. 91 , 1984 , pp. 301 - 323 . Article | Zbl 0546.60058 · Zbl 0546.60058
[15] G.S. Agarwal , Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches , Springer-Verlag , Berlin , Heidelberg , New York , 1974 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.