×

zbMATH — the first resource for mathematics

The necessary modeling detail for neuronal signaling: Poisson-Nernst-Planck and cable equation models in one and three dimensions. (English) Zbl 1465.92013
MSC:
92C20 Neural biology
92C05 Biophysics
92C37 Cell biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Ascoli, Mobilizing the base of neuroscience data: The case of neuronal morphologies, Nat. Rev. Neurosci., 7 (2006), pp. 318-324.
[2] L. J. Borg-Graham, Interpretations of data and mechanisms for hippocampal pyramidal cell models, Models of Cortical Circuits, Springer, New York, 1999, pp. 19-138, https://doi.org/10.1007/978-1-4615-4903-1_2.
[3] J. M. Bower and D. Beeman, The book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System, Springer, New York, 1997. · Zbl 0881.68135
[4] T. Branco, B. A. Clark, and M. Häusser, Dendritic discrimination of temporal input sequences in cortical neurons, Science, 329 (2010), pp. 1671-1675, https://doi.org/10.1126/science.1189664.
[5] M. Breit, M. Kessler, M. Stepniewski, A. Vlachos, and G. Queisser, Spine-to-dendrite calcium modeling discloses relevance for precise positioning of ryanodine receptor-containing spine endoplasmic reticulum, Nature Sci. Rep., 8 (2018), https://doi.org/10.1038/s41598-018-33343-9.
[6] M. Breit and G. Queisser, What is required for neuronal calcium waves? A numerical parameter study, J. Math. Neurosci., 8 (2018), https://doi.org/10.1186/s13408-018-0064-x. · Zbl 1395.92034
[7] M. Breit, M. Stepniewski, S. Grein, P. Gottmann, L. Reinhardt, and G. Queisser, Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox, Front. Neuroanatomy, 10 (2016), p. 8, https://doi.org/10.3389/fnana.2016.00008.
[8] A. Burette, T. Lesperance, J. Crum, M. Martone, N. Volkmann, M. Ellisman, and R. Weinberg, Electron tomographic analysis of synaptic ultrastructure, J. Comp. Neurol., 520 (2012), pp. 2697-2711.
[9] J. Byrne, R. Heidelberger, and M. Waxham, From Molecules to Networks, Elsevier, New York, 2014.
[10] J. Cartailler, Z. Schuss, and D. Holcman, Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the voltage-current relation in neurobiological microdomains, Phys. D, 339 (2017), pp. 39-48, https://doi.org/10.1016/j.physd.2016.09.001. · Zbl 1376.92012
[11] W. Chen and E. De Schutter, Time to bring single neuron modeling into 3D, Neuroinform., 15 (2017), pp. 1-3, https://doi.org/10.1007/s12021-016-9321-x.
[12] J. Coggan, S. Bittner, K. Stiefel, S. Meuth, and S. Prescott, Physiological dynamics in demyelinating diseases: Unraveling complex relationships through computer modeling, Int. J. Mol. Sci., 16 (2015), pp. 21215-21236.
[13] K. Deisseroth, P. G. Mermelstein, H. Xia, and R. W. Tsien, Signaling from synapse to nucleus: The logic behind the mechanisms, Curr. Opin. Neurobiol., 13 (2003), pp. 354-365.
[14] A. J. Ellingsrud, A. Solbr\aa, G. T. Einevoll, G. Halnes, and M. E. Rognes, Finite element simulation of ionic electrodiffusion in cellular geometries, Front. Neuroinform., 14 (2020), https://doi.org/10.3389/fninf.2020.00011.
[15] F. Gabbiani, J. Midtgaard, and T. Knöpfel, Synaptic integration in a model of cerebellar granule cells, J. Neurophysiol., 72 (1994), pp. 999-1009.
[16] D. E. Goldman, Potential, impedance, and rectification in membranes, J. Gen. Physiol., 27 (1943), pp. 37-60, https://doi.org/10.1085/jgp.27.1.37.
[17] G. Gramse, A. Dols-Perez, M. Edwards, L. Fumagalli, and G. Gomila, Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy, Biophys. J., 104 (2013), pp. 1257-1262, https://doi.org/10.1016/j.bpj.2013.02.011.
[18] U. Greber and L. Gerace, Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus, J. Cell Biol., 128 (1995), pp. 5-14.
[19] M. L. Hines and N. T. Carnevale, The NEURON simulation environment, Neural Comput., 9 (1997), pp. 1179-1209.
[20] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), pp. 500-544; also available online from http://jp.physoc.org/content/117/4/500.short.
[21] D. Holcman and R. Yuste, The new nanophysiology: Regulation of ionic flow in neuronal subcompartments, Nat. Rev. Neurosci., 16 (2015), https://doi.org/10.1038/nrn4022.
[22] S. Hrabetova, L. Cognet, D. A. Rusakov, and U. V. Nägerl, Unveiling the extracellular space of the brain: From super-resolved microstructure to in vivo function, J. Neurosci., 38 (2018), pp. 9355-9363, https://doi.org/10.1523/JNEUROSCI.1664-18.2018.
[23] Jülich Supercomputing Centre, JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre, J. Large-Scale Research Facilities, 5 (2019), https://doi.org/10.17815/jlsrf-5-171.
[24] C. Koch, Biophysics of Computation: Information Processing in Single Neurons, Oxford University Press, Oxford, 1999.
[25] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, Molecular Cell Biology, W. H. Freeman, San Francisco, 2000.
[26] C. L. Lopreore, T. M. Bartol, J. S. Coggan, D. X. Keller, G. E. Sosinsky, M. H. Ellisman, and T. J. Sejnowski, Computational modeling of three-dimensional electrodiffusion in biological systems: Application to the node of Ranvier, Biophys. J., 95 (2008), pp. 2624-2635, https://doi.org/10.1529/biophysj.108.132167.
[27] M. E. Martone, Y. Zhang, V. M. Simpliciano, B. O. Carragher, and M. H. Ellisman, Three-dimensional visualization of the smooth endoplasmic reticulum in Purkinje cell dendrites, J. Neurosci., 13 (1993), pp. 4636-4646.
[28] J. Meyers, J. Craig, and D. J. Odde, Potential for control of signaling pathways via cell size and shape, Curr Biol., 16 (2006), pp. 1685-1693.
[29] H. Mi, Differential distribution of closely related potassium channels in rat Schwann cells, J. Neurosci., 15 (1995), pp. 3761-3774.
[30] K. Moore, Clinically Oriented Anatomy, Lippincott Williams & Wilkins, Philadelphia, 2006.
[31] Y. Mori, From Three-dimensional Electrophysiology to the Cable Model: An Asymptotic Study, arXiv:0901.3914, 2009.
[32] S. A. Neymotin, R. A. McDougal, M. A. Sherif, C. P. Fall, M. L. Hines, and W. W. Lytton, Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: A computer model, Neural Comput., 27 (2015), pp. 898-924. · Zbl 1414.92110
[33] J. Pods, J. Schönke, and P. Bastian, Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations-Numerical simulation of the intra- and extracellular potential for an axon model, Biophys. J., 105 (2013), pp. 242-254, https://doi.org/10.1016/j.bpj.2013.05.041.
[34] V. Popov, N. I. Medvedev, H. A. Davies, and M. G. Stewart, Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: A three-dimensional ultrastructural study, J. Comp. Neurol., 492 (2005), pp. 50-65, https://doi.org/10.1002/cne.20682.
[35] N. Qian and T. Sejnowski, An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons, Biol. Cybernet., 62 (1989), pp. 1-15. · Zbl 0683.92004
[36] G. Queisser, J. Wiegert, and H. Bading, Structural dynamics of the cell nucleus: Basis for morphology modulation of nuclear calcium signaling and gene transcription, Nucleus, 2 (2011), pp. 98-104.
[37] S. Raghavachari and J. E. Lisman, Properties of quantal transmission at CA \(1\) synapses, J. Neurophysiol., 92 (2004), pp. 2456-2467, https://doi.org/10.1152/jn.00258.2004.
[38] W. Rall, Theoretical Significance of Dendritic Trees for Neuronal Input-Output Relations, in Neural Theory and Modeling: Proceedings of the 1962 Ojai Symposium, R. F. Reiss, ed., Stanford University Press, Palo Alto, CA, 1964, pp. 73-97.
[39] W. Rall, Core Conductor Theory and Cable Properties of Neurons, American Physiological Society, Rockville, MD, 1977.
[40] S. Reiter, ProMesh-Meshing of Unstructured Grids in 1, 2, and \(3\) Dimensions, 2012, http://promesh3d.com.
[41] S. Reiter, A. Vogel, I. Heppner, M. Rupp, and G. Wittum, A massively parallel geometric multigrid solver on hierarchically distributed grids, Comput. Vis. Sci., 16 (2013), pp. 151-164, https://doi.org/10.1007/s00791-014-0231-x. · Zbl 1380.65463
[42] J. Salzer, Clustering sodium channels at the node of Ranvier: Close encounters of the Axon-Glia kind, Neuron, 18 (1997), pp. 843-846.
[43] I. Shemer, B. Brinne, J. Tegnér, and S. Grillner, Electrotonic signals along intracellular membranes may interconnect dendritic spines and nucleus, Plos. Comp. Biol., 4 (2008), pp. 1-19, https://doi.org/10.1371/journal.pcbi.1000036.
[44] S. L. Smart, V. Lopantsev, C. L. Zhang, C. A. Robbins, H. Wang, S. Y. Chiu, P. A. Schwartzkroin, A. Messing, and B. L. Tempel, Deletion of the \(K(V)1.1\) potassium channel causes epilepsy in mice, Neuron, 20 (1998), pp. 809-819.
[45] J. Spacek, Three-dimensional analysis of dendritic spines. II. Spine apparatus and other cytoplasmic components, Anat. Embryol., 171 (1985), pp. 235-243.
[46] J. Tang and P. Janmey, The polyelectrolyte nature of f-actin and the mechanism of actin bundle formation, J. Biol. Chem., 271 (1996), pp. 8556-8563.
[47] M. Terasaki, N. T. Slater, A. Fein, A. Schmidek, and T. S. Reese, Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons, Proc. Natl. Acad. Sci. USA, 91 (1994), pp. 7510-7514; also available online from http://www.pnas.org/content/91/16/7510.abstract.
[48] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. and Stat. Comput., 13 (1992), pp. 631-644, https://doi.org/10.1137/0913035. · Zbl 0761.65023
[49] A. Vogel, S. Reiter, M. Rupp, A. Nägel, and G. Wittum, UG \(4\): A novel flexible software system for simulating PDE based models on high performance computers, Comput. Vis. Sci., 16 (2013), pp. 165-179, https://doi.org/10.1007/s00791-014-0232-9. · Zbl 1375.35003
[50] C. Voßen, J. P. Eberhard, and G. Wittum, Modeling and simulation for three-dimensional signal propagation in passive dendrites, Comput. Vis. Sci., 10 (2007), pp. 107-121, https://doi.org/10.1007/s00791-006-0036-7.
[51] M. Wittmann, G. Queisser, A. Eder, J. Wiegert, C. Bengtson, A. Hellwig, G. Wittum, and H. Bading, Synaptic activity induces dramatic changes in the geometry of the cell nucleus: Interplay between nuclear structure, histone \(H3\) phosphorylation, and nuclear calcium signaling, J. Neurosci., 29 (2009), pp. 14687-14700.
[52] Y. Wu, C. Whiteus, C. Xu, K. Hayworth, R. Weinberg, H. Hess, and P. De Camilli, Contacts between the endoplasmic reticulum and other membranes in neurons, Proc. Natl. Acad. Sci. USA, 114 (2017), pp. 4859-4867.
[53] K. Xylouris, G. Queisser, and G. Wittum, A three-dimensional mathematical model of active signal processing in axons, Comput. Vis. Sci., 13 (2008), pp. 409-418.
[54] K. Xylouris and G. Wittum, A three-dimensional mathematical model for the signal propagation on a neuron’s membrane, Front. Comput. Neurosci., 9 (2015), https://doi.org/10.3389/fncom.2015.00094.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.