zbMATH — the first resource for mathematics

Discontinuous Galerkin methods for a dispersive wave hydro-sediment-morphodynamic model. (English) Zbl 07340381
Summary: A dispersive wave hydro-sediment-morphodynamic model developed by complementing the shallow water hydro-sediment-morphodynamic (SHSM) equations with the dispersive term from the Green-Naghdi equations is presented. A numerical solution algorithm for the model based on the second-order Strang operator splitting is presented. The model is partitioned into two parts, (1) the SHSM equations and (2) the dispersive correction part, which are discretized using discontinuous Galerkin finite element methods. This splitting technique provides a facility to select dynamically regions of a problem domain where the dispersive term is not applied, e.g. wave breaking regions where the dispersive wave model is no longer valid. Algorithms that can handle wetting-drying and detect wave breaking are provided and a number of numerical examples are presented to validate the developed numerical solution algorithm. The results of the simulations indicate that the model is capable of predicting sediment transport and bed morphodynamic processes correctly provided that the empirical models for the suspended and bed load transport are properly calibrated. Moreover, the developed model is able to accurately capture hydrodynamics and wave dispersion effects up to swash zones, and its application is justified for simulations where dispersive wave effects are prevalent.
76-XX Fluid mechanics
86-XX Geophysics
Eigen; PETSc; HLLE; Blaze
Full Text: DOI
[1] Meyer-Peter, E.; Müller, R., Formulas for bed-load transport, Proceedings of 2nd Meeting of the International Association for Hydraulic Structures Research, 39-64 (1948), IAHR
[2] Luque, R. F.; van Beek, R., Erosion and transport of bed-load sediment, J. Hydraul. Res., 14, 2, 127-144 (1976)
[3] Nielsen, P., (Coastal Bottom Boundary Layers and Sediment Transport. Coastal Bottom Boundary Layers and Sediment Transport, Advanced Series on Ocean Engineering (1992), World Scientific)
[4] Ribberink, J. S., Bed-load transport for steady flows and unsteady oscillatory flows, Coast. Eng., 34, 1, 59-82 (1998)
[5] Amoudry, L. O., A Review on Coastal Sediment Transport Modelling (2008), Proudman Oceanographic Laboratory, http://nora.nerc.ac.uk/id/eprint/8360
[6] Amoudry, L. O.; Souza, A. J., Deterministic coastal morphological and sediment transport modeling: A review and discussion, Rev. Geophys., 49, 2 (2011)
[7] Wu, W.; Rodi, W.; Wenka, T., 3D numerical modeling of flow and sediment transport in open channels, J. Hydraul. Eng., 126, 1, 4-15 (2000)
[8] Fang, H.-W.; Wang, G.-Q., Three-dimensional mathematical model of suspended-sediment transport, J. Hydraul. Eng., 126, 8, 578-592 (2000)
[9] Marsooli, R.; Wu, W., Three-dimensional numerical modeling of dam-break flows with sediment transport over movable beds, J. Hydraul. Eng., 141, 1, Article 04014066 pp. (2015)
[10] Wu, W., Computational River Dynamics (2007), CRC Press: CRC Press London
[11] Cao, Z.; Xia, C.; Pender, G.; Liu, Q., Shallow water hydro-sediment-morphodynamic equations for fluvial processes, J. Hydraul. Eng., 143, 5, Article 02517001 pp. (2017)
[12] Xiao, H.; Young, Y. L.; Prévost, J. H., Hydro- and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part II: Numerical simulation, Mar. Geol., 269, 3, 119-131 (2010)
[13] Zhu, F.; Dodd, N., The morphodynamics of a swash event on an erodible beach, J. Fluid Mech., 762, 110-140 (2015)
[14] Kim, D.-H., H2D morphodynamic model considering wave, current and sediment interaction, Coast. Eng., 95, 20-34 (2015)
[15] Incelli, G.; Dodd, N.; Blenkinsopp, C. E.; Zhu, F.; Briganti, R., Morphodynamical modelling of field-scale swash events, Coast. Eng., 115, 42-57 (2016)
[16] Briganti, R.; Torres-Freyermuth, A.; Baldock, T. E.; Brocchini, M.; Dodd, N.; Hsu, T.-J.; Jiang, Z.; Kim, Y.; Pintado-Patin̄o, J. C.; Postacchini, M., Advances in numerical modelling of swash zone dynamics, Coast. Eng., 115, 26-41 (2016)
[17] Cao, Z.; Pender, G.; Wallis, S.; Prof, P., Computational dam-break hydraulics over erodible sediment bed, J. Hydraul. Eng., 130, 7, 689-703 (2004)
[18] Zhao, J.; Özgen-Xian, I.; Hinkelmann, R.; Simons, F.; Liang, D., Comparison of Capacity and Non-Capacity Sediment Transport Models for Dam Break Flow Over Movable Bed, 522-527 (2016), CRC Press: CRC Press London
[19] Zhao, J.; Özgen-Xian, I.; Liang, D.; Wang, T.; Hinkelmann, R., A depth-averaged non-cohesive sediment transport model with improved discretization of flux and source terms, J. Hydrol., 570, 647-665 (2019)
[20] Hu, P.; Lei, Y.; Han, J.; Cao, Z.; Liu, H.; He, Z., Computationally efficient modeling of hydro-sediment-morphodynamic processes using a hybrid local time step/global maximum time step, Adv. Water Resour., 127, 26-38 (2019)
[21] Li, S.; Duffy, C. J., Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers, Water Resour. Res., 47, 3 (2011)
[22] Benkhaldoun, F.; Elmahi, I.; Sari, S.; Seaid, M., An unstructured finite-volume method for coupled models of suspended sediment and bed load transport in shallow-water flows, Internat. J. Numer. Methods Fluids, 72, 9, 967-993 (2013) · Zbl 1455.76103
[23] Liu, X.; Sedano, J. A.I.; Mohammadian, A., A robust coupled 2-D model for rapidly varying flows over erodible bed using central-upwind method with wetting and drying, Can. J. Civil Eng., 42, 8, 530-543 (2015)
[24] Liu, X.; Mohammadian, A.; Kurganov, A.; Infante Sedano, J. A., Well-balanced central-upwind scheme for a fully coupled shallow water system modeling flows over erodible bed, J. Comput. Phys., 300, 202-218 (2015) · Zbl 1349.76357
[25] Liu, X.; Beljadid, A., A coupled numerical model for water flow, sediment transport and bed erosion, Comput. & Fluids, 154, 273-284 (2017) · Zbl 1390.76478
[26] Xia, C.; Cao, Z.; Pender, G.; Borthwick, A., Numerical algorithms for solving shallow water hydro-sediment-morphodynamic equations, Eng. Comput., 34 (2017)
[27] Kesserwani, G.; Shamkhalchian, A.; Zadeh, M. J., Fully coupled discontinuous Galerkin modeling of dam-break flows over movable bed with sediment transport, J. Hydraul. Eng., 140, 4, Article 06014006 pp. (2014)
[28] Clare, M.; Percival, J.; Angeloudis, A.; Cotter, C.; Piggott, M., Hydro-morphodynamics 2D modelling using a discontinuous Galerkin discretisation (2020)
[29] Zhao, D.; Shen, H. W.; Tabios, G. Q.; Lai, J. S.; Tan, W. Y., Finite-volume two-dimensional unsteady-flow model for river basins, J. Hydraul. Eng., 120, 7, 863-883 (1994)
[30] Anastasiou, K.; Chan, C. T., Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, Internat. J. Numer. Methods Fluids, 24, 11, 1225-1245 (1997) · Zbl 0886.76064
[31] Sleigh, P.; Gaskell, P.; Berzins, M.; Wright, N., An unstructured finite-volume algorithm for predicting flow in rivers and estuaries, Comput. & Fluids, 27, 4, 479-508 (1998) · Zbl 0964.76051
[32] Aizinger, V.; Dawson, C., A discontinuous Galerkin method for two-dimensional flow and transport in shallow water, Adv. Water Resour., 25, 1, 67-84 (2002)
[33] Yoon, T. H.; Kang, S.-K., Finite volume model for two-dimensional shallow water flows on unstructured grids, J. Hydraul. Eng., 130, 7, 678-688 (2004)
[34] Kubatko, E. J.; Westerink, J. J.; Dawson, C., Hp Discontinuous Galerkin methods for advection dominated problems in shallow water flow, Comput. Methods Appl. Mech. Engrg., 196, 1, 437-451 (2006) · Zbl 1120.76348
[35] Samii, A.; Kazhyken, K.; Michoski, C.; Dawson, C., A comparison of the explicit and implicit hybridizable discontinuous Galerkin methods for nonlinear shallow water equations, J. Sci. Comput., 80, 3, 1936-1956 (2019) · Zbl 1428.65093
[36] Bremer, M.; Kazhyken, K.; Kaiser, H.; Michoski, C.; Dawson, C., Performance comparison of HPX versus traditional parallelization strategies for the discontinuous Galerkin method, J. Sci. Comput., 80, 2, 878-902 (2019) · Zbl 1427.65238
[37] Green, A. E.; Naghdi, P. M., A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78, 2, 237-246 (1976) · Zbl 0351.76014
[38] Chazel, F.; Lannes, D.; Marche, F., Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model, J. Sci. Comput., 48, 1, 105-116 (2011) · Zbl 1419.76454
[39] Bonneton, P.; Chazel, F.; Lannes, D.; Marche, F.; Tissier, M., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J. Comput. Phys., 230, 4, 1479-1498 (2011) · Zbl 1391.76066
[40] Panda, N.; Dawson, C.; Zhang, Y.; Kennedy, A. B.; Westerink, J. J.; Donahue, A. S., Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves, J. Comput. Phys., 273, 572-588 (2014) · Zbl 1351.76074
[41] Lannes, D.; Marche, F., A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations, J. Comput. Phys., 282, 238-268 (2015) · Zbl 1351.76114
[42] Duran, A.; Marche, F., Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations, Commun. Comput. Phys., 17, 3, 721-760 (2015) · Zbl 1373.76082
[43] Duran, A.; Marche, F., A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes, Appl. Math. Model., 45, 840-864 (2017) · Zbl 1446.76016
[44] Samii, A.; Dawson, C., An explicit hybridized discontinuous Galerkin method for Serre-Green-Naghdi wave model, Comput. Methods Appl. Mech. Engrg., 330, 447-470 (2018) · Zbl 1439.76094
[45] Marche, F., Combined hybridizable discontinuous Galerkin (HDG) and Runge-Kutta discontinuous Galerkin (RK-DG) formulations for Green-Naghdi equations on unstructured meshes, J. Comput. Phys., 418, Article 109637 pp. (2020)
[46] Li, S.; Duffy, C. J., Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers, Water Resour. Res., 47, 3 (2011)
[47] Díaz, M. C.; Fernández-Nieto, E. D.; Ferreiro, A. M., Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods, Comput. & Fluids, 37, 3, 299-316 (2008) · Zbl 1237.76082
[48] Cordier, S.; Le, M.; de Luna, T. M., Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help, Adv. Water Resour., 34, 8, 980-989 (2011)
[49] Grass, A. J., Sediment Transport by Waves and CurrentsReport No. FL29 (1981), SERC London Centre for Marine Technology
[50] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503
[51] Mirabito, C.; Dawson, C.; Kubatko, E. J.; Westerink, J. J.; Bunya, S., Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes, Comput. Methods Appl. Mech. Engrg., 200, 1, 189-207 (2011) · Zbl 1225.76201
[52] Harten, A.; Lax, P. D.; Leer, B.v., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[53] Nguyen, N.; Peraire, J., Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics, J. Comput. Phys., 231, 18, 5955-5988 (2012) · Zbl 1277.65082
[54] Bunya, S.; Kubatko, E. J.; Westerink, J. J.; Dawson, C., A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations, Comput. Methods Appl. Mech. Engrg., 198, 17, 1548-1562 (2009) · Zbl 1227.76026
[55] Krivodonova, L.; Xin, J.; Remacle, J.-F.; Chevaugeon, N.; Flaherty, J., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Appl. Numer. Math., 48, 3, 323-338 (2004) · Zbl 1038.65096
[56] Cockburn, B.; Shu, C., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[57] Guennebaud, G.; Jacob, B., Eigen v3 (2010), www.eigen.tuxfamily.org
[58] Iglberger, K., Blaze \(C + +\) linear algebra library (2012), www.bitbucket.org/blaze-lib
[59] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Karpeyev, D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., Portable, extensible toolkit for scientific computation (2019), www.mcs.anl.gov/petsc
[60] Kaiser, H.; Lelbach, B. A.; Heller, T.; Simberg, M.; Bergé, A.; Biddiscombe, J.; Bikineev, A.; Mercer, G.; Schäfer, A.; Huck, K.; Lemoine, A. S.; Kwon, T.; Habraken, J.; Anderson, M.; Copik, M.; Brandt, S. R.; Stumpf, M.; Bourgeois, D.; Blank, D.; Jakobovits, S.; Amatya, V.; Viklund, L.; Khatami, Z.; Diehl, P.; Pathak, T.; Bacharwar, D.; Yang, S.; Schnetter, E., STEllAR-GROUP/hpx: HPX V1.4.1: The \(C + +\) standards library for parallelism and concurrency (2020)
[61] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 4, 345-390 (1991) · Zbl 0742.76059
[62] Fraccarollo, L.; Capart, H., Riemann wave description of erosional dam-break flows, J. Fluid Mech., 461, 183-228 (2002) · Zbl 1142.76344
[63] Capart, H.; Young, D. L., Formation of a jump by the dam-break wave over a granular bed, J. Fluid Mech., 372, 165-187 (1998) · Zbl 0941.86001
[64] Goutiere, L.; Soares-Frazão, S.; Zech, Y., Dam-break flow on mobile bed in abruptly widening channel: Experimental data, J. Hydraul. Res., 49, 3, 367-371 (2011)
[65] Soares-Frazão, S.; Canelas, R.; Cao, Z.; Cea, L.; Chaudhry, H. M.; Die Moran, A.; El Kadi, K.; Ferreira, R.; Fraga Cadórniga, I.; Gonzalez-Ramirez, N.; Greco, M.; Huang, W.; Imran, J.; Le Coz, J.; Marsooli, R.; Paquier, A.; Pender, G.; Pontillo, M.; Puertas, J.; Spinewine, B.; Swartenbroekx, C.; Tsubaki, R.; Villaret, C.; Wu, W.; Yue, Z.; Zech, Y., Dam-break flows over mobile beds: Experiments and benchmark tests for numerical models, J. Hydraul. Res., 50, 4, 364-375 (2012)
[66] Sumer, B. M.; Sen, M. B.; Karagali, I.; Ceren, B.; Fredsøe, J.; Sottile, M.; Zilioli, L.; Fuhrman, D. R., Flow and sediment transport induced by a plunging solitary wave, J. Geophys. Res. Ocean., 116, C1 (2011)
[67] Young, Y. L.; Xiao, H.; Maddux, T., Hydro- and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part I: Experimental study, Mar. Geol., 269, 3, 107-118 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.