A sharp interface method using enriched finite elements for elliptic interface problems. (English) Zbl 1464.65176

Many applications in engineering and biology involve immersed interfaces moving in time within the computational domain. Interface problems are discretized using fitted or unfitted finite elements. The mesh generation process in the case of fitted elements for moving interfaces becomes expensive. In order to avoid expensive re-meshing, the immersed boundary method (IBM) of Peskin is used. In this paper, enriched finite element spaces are used which yield an interface fitted scheme for elliptic interface problems. The features of the interface are approximated properly by introducing local modifications, enrichments, or extensions of the finite element spaces. The derived immersed interface method avoids costly re-meshing. It was shown that the proposed method has the same order of approximation as comparable enriched methods for a general elliptic interface problem. Moreover, the discrete operator inherits the symmetry and positive definiteness of the continuous operator since it is a fitted method. The stability and convergence of the solution is proven and the numerical tests demonstrate optimal order of convergence. The method is compared with the enrichment of a CutFEM and of Peskins original IBM by looking at the local finite element spaces.


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65F35 Numerical computation of matrix norms, conditioning, scaling
35J15 Second-order elliptic equations
35A15 Variational methods applied to PDEs
Full Text: DOI


[1] Bank, RE; Rose, DJ, Some error estimates for the box method, SIAM J. Numer. Anal., 24, 777-787 (1987) · Zbl 0634.65105
[2] Basting, S.; Prignitz, R., An interface-fitted subspace projection method for finite element simulations of particulate flows, Comput. Methods Appl. Mech. Eng., 267, 133-149 (2013) · Zbl 1286.76155
[3] Becker, R.; Burman, E.; Hansbo, P., A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, Comput. Methods Appl. Mech. Eng., 198, 3352-3360 (2009) · Zbl 1230.74169
[4] Bey, J.: Finite-Volumen- und Mehrgitterverfahren für elliptische Randwertprobleme. PhD thesis, Universität Tübingen (1997) · Zbl 0888.65126
[5] Braess, D., Finite Elemente (2007), Berlin: Springer, Berlin · Zbl 1118.65117
[6] Burman, E.; Fernandez, MA, Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Eng., 198, 5-8, 766-784 (2009) · Zbl 1229.76045
[7] Burman, E.; Hansbo, P.; Larson, MG; Massing, A., A cut discontinuous Galerkin method for the Laplace-Beltrami operator, AIMA J. Numer. Anal., 37, 138-169 (2017) · Zbl 1433.65281
[8] Chen, L.: Finite Volume Methods. private Communication http://www.math.uci.edu/ chenlong/226/FVM.pdf (2010)
[9] Chou, S.; Kwak, DY, Analysis and convergence of a MAC-like scheme for the generalized Stokes problem, Numer. Methods Partial Differ. Equ., 13, 147-162 (1997) · Zbl 0868.76065
[10] Frei, S.: Eulerian finite element methods for interface problems and fluid-structure interactions. PhD thesis, Heidelberg University, http://www.ub.uni-heidelberg.de/archiv/21590 (2016)
[11] Frei, S.; Richter, T., A locally modified parametric finite element method for interface problems, SIAM J. Numer. Anal., 52, 2315-2334 (2014) · Zbl 1310.65145
[12] Gangl, P.; Langer, U., A local mesh modification strategy for interface problems with application to shape and topology optimization, Sci. Comput. Electr. Eng. Math. Ind., 28, 147-155 (2018)
[13] Gross, S.; Ludescher, T.; Olshanskii, M.; Reusken, A., Robust preconditioning for XFEM applied to time-dependent Stokes problems, SIAM J. Sci. Comput., 38, 6, A3492-A3514 (2016) · Zbl 1398.76106
[14] Hackbusch, W., On first and second order box schemes, Computing, 41, 4, 277-296 (1989) · Zbl 0649.65052
[15] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Eng., 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125
[16] Hansbo, P.; Hermansson, J.; Svedberg, T., Nitsche’s method combined with space-time finite elements for ALE fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 193, 4195-4206 (2004) · Zbl 1175.74082
[17] Hansbo, P.; Larson, MG; Zahedi, S., A cut finite element method for a Stokes interface problem, Appl. Numer. Math., 85, 90-114 (2014) · Zbl 1299.76136
[18] Höllbacher, S.: Voll gekoppelte Modellierung zur direkten numerischen Simulation partikulärer Fluide. PhD thesis, Universität Frankfurt (2016)
[19] Höllbacher, S. , Wittum, G.: Gradient-consistent enrichment of finite element spaces for the DNS of fluid-particle interaction. J. Comput. Phys. 401, 109003 (2020). ISSN 0021-9991. doi:10.1016/j.jcp.2019.109003 · Zbl 1453.76096
[20] Höllbacher, S.; Wittum, G., Rotational test spaces for a fully-implicit FVM and FEM for DNS of fluid-particle interaction, J. Comput. Phys., 393, 186-213 (2019) · Zbl 1452.76117
[21] Babuska, UB; Osborn, JE, Generalized finite element methods: main ideas, results, and perspective, Int. J. Comput. Methods, 1, 67-103 (2004) · Zbl 1081.65107
[22] Kirchhart, M.; Gross, S.; Reusken, A., Analysis of an XFEM discretization for Stokes interface problems, SIAM J. Sci. Comput., 38, 2, A1019-A1043 (2017) · Zbl 1381.76182
[23] Liu, CR, On partitions of unity property of nodal shape functions: rigid-body-movement reproduction and mass conservation, Int. J. Comput. Methods, 13, 1-13 (2016) · Zbl 1359.65261
[24] Liu, XD; Fedkiw, RP; Kang, M., A boundary condition capturing method for Poissons equation on irregular domains, J. Comput. Phys., 160, 151-178 (2000) · Zbl 0958.65105
[25] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 1, 239-261 (2005) · Zbl 1117.76049
[26] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng., 46, 131-150 (1999) · Zbl 0955.74066
[27] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh ad Math. Sem. Univ. Hamburg, 36, 9-15 (1971) · Zbl 0229.65079
[28] Peskin, CS, Numerical Analysis of Blood Flow in the Heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[29] Reusken, A., Analysis of an extended pressure finite element space for two-phase incompressible flows, Comput. Vis. Sci., 11, 4-6, 293-305 (2008)
[30] Tornberg, TK; Engquist, B., Regularization techniques for numerical approximation of PDES with singularities, J. Sci. Comput., 19, 527-552 (2003) · Zbl 1035.65085
[31] Tornberg, TK; Engquist, B., Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 462-488 (2004) · Zbl 1115.76392
[32] Vogel, A.; Reiter, S.; Rupp, M.; Nägel, A.; Wittum, G., UG 4: a novel flexible software system for simulating PDE based models on high performance computers, Comput. Vis. Sci., 16, 165-179 (2013) · Zbl 1375.35003
[33] Wang, F., Xiao, Y., Xu, J.: High-Order Extended Finite Element Methods for Solving Interface Problems. Numerical Analysis pp 1-25, (2016), arXiv:1604.06171
[34] Wloka, J., Partielle Differentialgleichungen (1982), Stuttgart: Teubner, Stuttgart
[35] Xu, J.; Zou, Q., Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numer. Math., 111, 3, 469-492 (2009) · Zbl 1169.65110
[36] Ye, X., On the relationship between finite volume and finite element methods applied to the Stokes equations, Numer. Methods Partial Differ. Equ., 17, 440-453 (2001) · Zbl 1017.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.