×

On distributed symbolic control of interconnected systems under persistency specifications. (English) Zbl 1461.93147

Summary: This paper presents an abstraction-based technique to solve the problem of distributed controller design enforcing persistency specifications for interconnected systems. For each subsystem, controller synthesis is based on local distributed sensor information from other subsystems. An effective method is presented for quantification of such partial information in an abstraction in terms of level sets of Lyapunov-like ranking functions. The results are illustrated on a laboratory hydraulic system.

MSC:

93B50 Synthesis problems
93B18 Linearizations

Software:

SCOTS; CoSyma; PESSOA; TuLiP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Apaza-Perez, W.A., Combastel, C. and Zolghadri, A. (2019). Abstraction-based low complexity controller synthesis for interconnected non-deterministic systems, 18th European Control Conference (ECC), Naples, Italy, pp. 4174-4179.
[2] Belta,C., Yordanov, B. and Göl, E. (2017). Formal Methods for Discrete-Time Dynamical Systems, Springer, Cham. · Zbl 1409.93003
[3] Borri, A., Pola, G. and Benedetto, M.D.D. (2012). A symbolic approach to the design of nonlinear networked control systems, 15th ACM International Conference on Hybrid Systems: Computation and Control, HSCC’12, Beijing, China, pp. 255-264. · Zbl 1361.68018
[4] Borri, A., Pola, G. and Benedetto, M.D.D. (2019). Design of symbolic controllers for networked control systems, IEEE Transactions on Automatic Control64(3): 1034-1046. · Zbl 1482.93372
[5] Chen, Y., Anderson, J., Kalsi, K., Low, S.H. and Ames, A.D. (2019). Compositional set invariance in network systems with assume-guarantee contracts, 2019 American Control Conference (ACC), Philadelphia, PA, USA, pp. 1027-1034.
[6] Coënt, A.L., Fribourg, L., Markey, N., Vuyst, F.D. and Chamoin, L. (2016). Distributed synthesis of state-dependent switching control, in K.G. Larsen et al. (Eds), Reachability Problems, Springer, Cham, pp. 119-133. · Zbl 1405.93125
[7] Dallal, E. and Tabuada, P. (2015). On compositional symbolic controller synthesis inspired by small-gain theorems, 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, pp. 6133-6138.
[8] Dashkovskiy, S.N., Rüffer, B.S. and Wirth, F.R. (2010). Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM Journal on Control and Optimization48(6): 4089-4118. · Zbl 1202.93008
[9] Eqtami, A. and Girard, A. (2019). A quantitative approach on assume-guarantee contracts for safety of interconnected systems, 18th European Control Conference (ECC), Naples, Italy, pp. 536-541.
[10] Ge, X., Yang, F. and Han, Q.L. (2017). Distributed networked control systems: A brief overview, Information Sciences380: 117-131.
[11] Ghasemi, K., Sadraddini, S. and Belta, C. (2020). Compositional synthesis via a convex parameterization of assume-guarantee contracts, 23rd International Conference on Hybrid Systems: Computation and Control, HSCC’20, Sydney, Australia. · Zbl 07300857
[12] Girard, A., Gössler, G. and Mouelhi, S. (2016). Safety controller synthesis for incrementally stable switched systems using multiscale symbolic models, IEEE Transactions on Automatic Control61(6): 1537-1549. · Zbl 1359.93350
[13] Girard, A. and Pappas, G.J. (2011). Approximate bisimulation: A bridge between computer science and control theory, European Journal of Control17(5): 568-578. · Zbl 1253.68241
[14] Gruber, F., Kim, E.S. and Arcak, M. (2017). Sparsity-aware finite abstraction, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, pp. 2366-2371.
[15] Henzinger, T.A., Qadeer, S., Rajamani, S.K. and Tasiran, S. (2002). An assume-guarantee rule for checking simulation, ACM Transactions on Programming Languages and Systems24(1): 51-64.
[16] Jabri, D., Guelton, K., Belkhiat, D.E.C. and Manamanni, N. (2020). Decentralized static output tracking control of interconnected and disturbed Takagi-Sugeno systems, International Journal of Applied Mathematics and Computer Science30(2): 225-238, DOI: 10.34768/amcs-2020-0018.
[17] Jiang, Z.P., Teel, A.R. and Praly, L. (1994). Small-gain theorem for ISS systems and applications, Mathematics of Control, Signals and Systems7(2): 95-120. · Zbl 0836.93054
[18] Kamiński, M. (2015). Symbolic computing in probabilistic and stochastic analysis, International Journal of Applied Mathematics and Computer Science25(4): 961-973, DOI: 10.1515/amcs-2015-0069. · Zbl 1347.68374
[19] Kim, E.S., Arcak, M. and Seshia, S.A. (2015). Compositional controller synthesis for vehicular traffic networks, 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, pp. 6165-6171.
[20] Majumdar, R. and Zamani, M. (2012). Approximately bisimilar symbolic models for digital control systems, in P. Madhusudan and S.A. Seshia (Eds), Computer Aided Verification, Springer, Berlin/Heidelberg, pp. 362-377.
[21] Mazo, M., Davitian, A. and Tabuada, P. (2010). PESSOA: A tool for embedded controller synthesis, in T. Touili et al. (Eds), Computer Aided Verification, Springer, Berlin/Heidelberg, pp. 566-569.
[22] Meyer, P. and Dimarogonas, D.V. (2017). Compositional abstraction refinement for control synthesis under lasso-shaped specifications, 2017 American Control Conference (ACC), Seattle, WA, USA, pp. 523-528.
[23] Meyer, P., Girard, A. and Witrant, E. (2018). Compositional abstraction and safety synthesis using overlapping symbolic models, IEEE Transactions on Automatic Control63(6): 1835-1841. · Zbl 1395.93398
[24] Mouelhi, S., Girard, A. and Gossler, G. (2013). COSYMA: A tool for controller synthesis using multi-scale abstractions, 16th International Conference on Hybrid Systems: Computation and Control, HSCC’13, Philadelphia, PA, USA, pp. 83-88.
[25] Nilsson, L.P. (2017). Correct-by-Construction Control Synthesis for High-Dimensional Systems, PhD thesis, University of Michigan, Ann Arbor, MI.
[26] Nilsson, P. and Ozay, N. (2020). Control synthesis for permutation-symmetric high-dimensional systems with counting constraints, IEEE Transactions on Automatic Control65(2): 461-476. · Zbl 07256178
[27] Pola, G., Girard, A. and Tabuada, P. (2008). Approximately bisimilar symbolic models for nonlinear control systems, Automatica44(10): 2508-2516. · Zbl 1155.93322
[28] Pola, G., Pepe, P. and Benedetto, M.D.D. (2018). Decentralized supervisory control of networks of nonlinear control systems, IEEE Transactions on Automatic Control63(9): 2803-2817. · Zbl 1423.93258
[29] Pola, G., Pepe, P., Benedetto, M.D.D. and Tabuada, P. (2010). Symbolic models for nonlinear time-delay systems using approximate bisimulations, Systems & Control Letters59(6): 365-373. · Zbl 1197.93090
[30] Reissig, G. (2011). Computing abstractions of nonlinear systems, IEEE Transactions on Automatic Control56(11): 2583-2598. · Zbl 1368.93178
[31] Reissig, G., Weber, A. and Rungger, M. (2017). Feedback refinement relations for the synthesis of symbolic controllers, IEEE Transactions on Automatic Control62(4): 1781-1796. · Zbl 1366.93363
[32] Rungger, M. and Zamani, M. (2016). Scots: A tool for the synthesis of symbolic controllers, 19th International Conference on Hybrid Systems: Computation and Control, HSCC’16, Vienna, Austria, pp. 99-104. · Zbl 1364.93267
[33] Saoud, A. (2019). Compositional and Efficient Controller Synthesis for Cyber-Physical Systems, PhD thesis, Université Paris-Saclay, Gif sur Yvette.
[34] Saoud, A., Girard, A. and Fribourg, L. (2019). Assume-guarantee contracts for discrete and continuous-time systems, Preprint, https://hal.archives-ouvertes.fr/hal-02196511.
[35] Saoud, A., Girard, A. and Fribourg, L. (2020). Contract-based design of symbolic controllers for safety in distributed multiperiodic sampled-data systems, IEEE Transactions on Automatic Control, DOI:10.1109/TAC.2020.2992446.
[36] Saoud, A., Jagtap, P., Zamani, M. and Girard, A. (2018). Compositional abstraction-based synthesis for cascade discrete-time control systems, 6th IFAC Conference on Analysis and Design of Hybrid System, Oxford, UK.
[37] Tabuada, P. (2009). Verification and Control of Hybrid Systems, Springer, New York, NY. · Zbl 1195.93001
[38] Tazaki, Y. and Imura, J. (2012). Discrete abstractions of nonlinear systems based on error propagation analysis, IEEE Transactions on Automatic Control57(3): 550-564. · Zbl 1369.93121
[39] Weber, A., Rungger, M. and Reissig, G. (2017). Optimized state space grids for abstractions, IEEE Transactions on Automatic Control62(11): 5816-5821. · Zbl 1390.93419
[40] Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H. and Murray, R. (2011). Tulip: A software toolbox for receding horizon temporal logic planning, 14th International Conference on Hybrid Systems: Computation and Control, HSCC’11, Chicago, IL, USA, pp. 313-314.
[41] Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A. and Lygeros, J. (2014). Symbolic control of stochastic systems via approximately bisimilar finite abstractions, IEEE Transactions on Automatic Control59(12): 3135-3150. · Zbl 1360.93445
[42] Zamani, M., Pola, G., Mazo, M. and Tabuada, P. (2012). Symbolic models for nonlinear control systems without stability assumptions, IEEE Transactions on Automatic Control57(7): 1804-1809. · Zbl 1369.93002
[43] Zhai, G., Chen, N. and Gui, W. (2013). Decentralized design of interconnected H_∞ feedback control systems with quantized signals, International Journal of Applied Mathematics and Computer Science23(2): 317-325, DOI:10.2478/amcs-2013-0024. · Zbl 1282.93105
[44] Zolghadri, A., Henry, D. and Monsion, M. (1996). Design of nonlinear observers for fault diagnosis: A case study, Control Engineering Practice4(11): 1535-1544.
[45] Zonetti, D., Saoud, A., Girard, A. and Fribourg, L. (2019). A symbolic approach to voltage stability and power sharing in time-varying DC microgrids, 2019 18th European Control Conference (ECC), Naples, Italy, pp. 903-909.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.