zbMATH — the first resource for mathematics

Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching. (English) Zbl 1461.92011
Summary: A major challenge in plant developmental biology is to understand how plant growth is coordinated by interacting hormones and genes. To meet this challenge, it is important to not only use experimental data, but also formulate a mathematical model. For the mathematical model to best describe the true biological system, it is necessary to understand the parameter space of the model, along with the links between the model, the parameter space and experimental observations. We develop sequential history matching methodology, using Bayesian emulation, to gain substantial insight into biological model parameter spaces. This is achieved by finding sets of acceptable parameters in accordance with successive sets of physical observations. These methods are then applied to a complex hormonal crosstalk model for Arabidopsis root growth. In this application, we demonstrate how an initial set of 22 observed trends reduce the volume of the set of acceptable inputs to a proportion of \(6.1 \times 10^{-7}\) of the original space. Additional sets of biologically relevant experimental data, each of size 5, reduce the size of this space by a further three and two orders of magnitude respectively. Hence, we provide insight into the constraints placed upon the model structure by, and the biological consequences of, measuring subsets of observations.
92C15 Developmental biology, pattern formation
92C80 Plant biology
34C60 Qualitative investigation and simulation of ordinary differential equation models
GPy; GitHub; GPfit
Full Text: DOI
[1] Alves, R., Antunes, F., and Salvador, A. (2006). Tools for kinetic modeling of biochemical networks. Nat. Biotechnol., 24: 667-672, doi:10.1038/nbt0606-667.
[2] Andrianakis, Y. and Challenor, P. G. (2009). Parameter estimation and prediction using Gaussian processes. MUCM Technical report. University of Southampton.
[3] Andrianakis, Y., and Challenor, P.G. (2011). Parameter estimation for Gaussian process emulators. Tech. rept. MUCM.
[4] Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga, R. N., Goldstein, M., and White, R. G. (2015). Bayesian history matching of complex infectious disease models using emulation: a tutorial and a case study on hiv in uganda.
[5] Andrianakis, I., McCreesh, N., Vernon, I. R., McKinley, T. J., Oakley, J., Nsubuga, R., Goldstein, M., and White, R. G. (2017a). History matching of a high dimensional individual based HIV transmission model. J. Uncertain. Quantification. 5: 694-719, doi:10.1137/16M1093008. · Zbl 1387.62111
[6] Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga, R. N., Goldstein, M., and White, R. G. (2017b). History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation. J. Roy. Stat. Soc. C Appl. Stat., 66: 717-740, doi:10.1111/rssc.12198.
[7] Arendt, P.D., Apley, D.W., and Chen, W. (2012). Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. J. Mech. Des., 134, doi:10.1115/1.4007390.
[8] Babtie, A. C. and Stumpf, M. P. H. (2017). How to deal with parameters for whole-cell modelling. Interface, 14, doi:10.1098/rsif.2017.0237.
[9] Bastos, T. S. and O’Hagan, A. (2008). Diagnostics for Gaussian process emulators. Technometrics, 51: 425-438, doi:10.1198/tech.2009.08019.
[10] Boogerd, F. C., Bruggeman, F., Hofmeyr, J. H. S., and Westerhoff, H. V. (Eds.) 2007. Systems biology philosophical foundations. Elsevier, Amsterdam.
[11] Bower, R.G., Vernon, I., Goldstein, M., Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S., and Frenk, C. S. 2010 (October). The parameter space of galaxy formation. Online link: doi:10.1111/j.1365-2966.2010.16991.x Also published in the Monthly notices of the Royal Astronomical Society.
[12] Brooks, S., Gelman, A., Jones, G., and Meng, X. (2011). Handbook of Markov chain monte carlo. CRC press, Florida. · Zbl 1218.65001
[13] Brynjarsdottir, J. and O’Hagan, A. (2014). Learning about physical parameters: The importance of model discrepancy. Inverse Probl., 30, doi:10.1088/0266-5611/30/11/114007. · Zbl 1307.60042
[14] Castelletti, A., Galelli, S., Ratto, M., Soncini-Sessa, R., and Young, P. C. (2012). A general framework for dynamic emulation modelling in environmental problems. Environ. Model. Software, 34: 5-18, doi:10.1016/j.envsoft.2012.01.002.
[15] Castruccio, S., McInerney, D. J., Stein, M. L., Crouch, F. L., Jacob, R. L., and Moyer, E. J. (2014). Statistical emulation of climate model projections based on precomputed GCM runs. J. Clim., 27: 1829-1844, doi:10.1175/jcli-d-13-00099.1.
[16] Conti, S., Gosling, J. P., Oakley, J., and O’Hagan, A. (2009). Gaussian process emulation of dynamic computer codes. MUCM. · Zbl 1437.62015
[17] Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1996). Bayes linear strategies for matching hydrocarbon reservoir history. In: Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (Eds.), Bayesian statistics, Vol. 5. Clarendon Press, Oxford, pp. 69-95.
[18] Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1997). Pressure matching for hydrocarbon reservoirs: a case study in the use of Bayes linear strategies for large computer experiments (with discussion). In: Gatsonis, C., Hodges, J. S., Kass, R. E., McCulloch, R. E., Rossi, P., and Singpurwalla, N. D. (Eds.), Case studies in Bayesian statistics, Vol. 3. Springer, New York, pp. 36-93.
[19] Cumming, J. and Goldstein, M. (2007). Multilevel emulation. MUCM Technical Report 10/07.
[20] Cumming, J. and Goldstein, M. (2010). Bayes linear uncertainty analysis for oil reservoirs based on multiscale computer experiments. In: O’Hagan, A., and Mike, W. (Eds.). The Oxford handbook of applied Bayesian analysis. Oxford University Press, pp. 241-270.
[21] Cumming, J. and Goldstein, M. (2009). Small sample Bayesian designs for complex high-dimensional models based on information gained using fast approximations. Technometrics, 51: 377-388, doi:10.1198/tech.2009.08015.
[22] Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991). Bayesian prediction of deterministic functions with applications to the design and analysis of computer experiments. J. Am. Stat. Assoc., 86: 953-963, doi:10.1080/01621459.1991.10475138.
[23] de Finetti, B. (1974). Theory of probability, Vol. 1. Wiley.
[24] de Finetti, B. (1975). Theory of probability, Vol. 2. Wiley.
[25] Farah, M., Birrell, P., Contin, S., and De Angelis, D. (2014). Bayesian emulation and calibration of a dynamic epidemic model for A/H1N1 influenza. J. Am. Stat. Assoc., 109: 1398-1411, doi:10.1080/01621459.2014.934453.
[26] Fisher, R. A. (1937). The design of experiments. Oliver and Boyd. · JFM 61.0566.03
[27] Forrester, A. (2010). Black-box calibration for complex-system simulation. Phil. Trans. Roy. Soc. A, 368: 3567-3579, doi:10.1098/rsta.2010.0051.
[28] Gardner, P., Lord, C., and Barthorpe, R. J. (2018). Bayesian history matching for forward model-driven structural health monitoring. Model Validation Uncertain. Quantification, 3: 175-183, doi:10.1007/978-3-319-74793-4_22.
[29] Goldstein, M. (1999). Bayes linear analysis. Chap. Bayes Linear Analysis. In: Kotz, S., Read, C. B., Balakrishnan, N., and Vidakovic, B. (Eds.), Encyclopedia of statistical sciences. Wiley, New York, pp. 29-34.
[30] Goldstein, M. and Rougier, J. C. (2006). Bayes linear calibrated prediction for complex systems. J. Am. Stat. Assoc., 101: 1132-1143, doi:10.1198/016214506000000203. · Zbl 1120.62351
[31] Goldstein, M. and Rougier, J. C. (2009). Reified Bayesian modelling and inference for physical systems (with Discussion). J. Stat. Plann. Inference, 139: 1221-1239, doi:10.1016/j.jspi.2008.07.019. · Zbl 1156.62316
[32] Goldstein, M. and Wooff, D. (2007). Bayes linear statistics. Wiley, Chichester. · Zbl 1231.62033
[33] Goldstein, M., Seheult, A., and Vernon, I. (2013). Assessing model adequacy. In: Wainwright, J. and Mulligan, M. (Eds.), Environmental modelling: Finding simplicity in complexity. John Wiley and Sons, Chichester.
[34] Gong, Z. and DiazDelaO, F. A. (2017). Sampling schemes for history matching using subset simulations. Proceedings for the 1st international conference on uncertainty quantification in computational sciences and engineering.
[35] Gosling, J. P., Hart, A., Owen, H., Davies, M., Li, J., and MacKay, C. (2013). A Bayes linear approach to weight-of-evidence risk assessment for skin allergy. Bayesian Anal., 8: 169-186, doi:10.1214/13-ba807. · Zbl 1329.62424
[36] GPy. (since 2012). GPy: A Gaussian process framework in Python. Available at: https://github.com/SheffieldML/GPy.
[37] Hamdi, H., Couckuyt, I., Sousa, M. C., and Dhaene, T. 2017. Gaussian Processes for history-matching: application to an unconventional gas reservoir. Comput. Geosci., 21: 267-287, doi:10.1007/s10596-016-9611-2. · Zbl 1387.86054
[38] Hankin, R. K. S. (2005). Introducing BACCO: an R bundle for Bayesian analysis of computer code output. J. Stat. Software, 14, doi:10.18637/jss.v014.i16.
[39] Heitmann, K., Higdon, D., White, M., Habib, S., Williams, B. J., Lawrence, E., and Wagner, C. (2010). The coyote universe II: cosmological models and precision emulation of the nonlinear matter power spectrum.
[40] Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model calibration using high-dimensional output. 103: 570-583, doi:10.1198/016214507000000888. · Zbl 05564511
[41] Holden, P. B., Edwards, N. R., Hensman, J., and Wilkinson, R. D. (2018). Handbook of approximate Bayesian computation. Chapman and Hall. Chap. ABC for climate: dealing with expensive simulators.
[42] Jamshidi, N. and Palsson, B. O. (2008). Formulating genome-scale kinetic models in the post-genome era. Mol. Syst. Biol., 4, doi:10.1038/msb.2008.8.
[43] Johnson, J. S., Gosling, J. P., and Kennedy, M. C. (2011). Gaussian process emulation for second-order Monte Carlo simulations. J. Stat. Plann. Inference, 141: 1838-1848, doi:10.1016/j.jspi.2010.11.034. · Zbl 1207.62180
[44] Jones, B., Gunneras, S. A., Petersson, S. V., Tarkowski, P., Graham, N., May, S., Dolezal, K., Sandberg, G., and Ljung, K. (2010). Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell, 22: 2956-2969, doi:10.1105/tpc.110.074856.
[45] Journel, A. G. and Huijbregts, C. J. (1978). Mining geostatistics. Academic Press, Amsterdam.
[46] Kaye, K., Day, R. D., Hair, E. C., Moore, K. A., Hadley, A. M., Teixeira, P. J., Helmschrott, S., Massing, N. and Ackermann, D. (2009). Parent marital quality and the parent-adolescent relationship: effects on sexual activity among adolescents and youth. Marriage & Family Rev., 45: 270-288.
[47] Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. J. Roy. Stat. Soc., 63: 425-464, doi:10.1111/1467-9868.00294. · Zbl 1007.62021
[48] Liu, J., Mehdi, S., Topping, J., Tarkowski, P., and Lindsey, K. (2010). Modelling and experimental analysis of hormonal crosstalk in arabidopsis. Mol. Syst. Biol., 6, doi:10.1038/msb.2010.26.
[49] Liu, J., Mehdi, S., Topping, J., Friml, J., and Lindsey, K. (2013). Interaction of PLS and PIN and hormonal crosstalk in arabidopsis root development. Front. Plant Sci., 4, doi:10.3389/fpls.2013.00075.
[50] Liu, J., Rowe, J., and Lindsey, K. (2014). Hormonal crosstalk for root development: a combined experimental and modelling perspective. Front. Plant Sci.: 116, doi:10.3389/fpls.2014.00116.
[51] Liu, J., Moore, S., Chen, C., and Lindsey, K. (2017). Crosstalk complexities between auxin, cytokinin, and ethylene in arabidopsis root development: From experiments to systems modeling, and back again. Mol. Plant, 10: 1480-1496, doi:10.1016/j.molp.2017.11.002.
[52] MacDonald, B., Ranjan, P., and Chipman, H. (2015). GPfit: An R package for fitting a Gaussian process model to deterministic simulator outputs. J. Stat. Software, Articles 64: 1-23, doi:10.18637/jss.v064.i12.
[53] McCreesh, N., Andrianakis, I., Nsubuga, R. N., Strong, M., Vernon, I., McKinley, T. J., Oakley, J. E., Goldstein, M., Hayes, R., and White, R. G. (2017). Universal test, treat, and keep: improving ART retention is key in cost-effective HIV control in Uganda. BMC Infect. Dis., 17: 322, doi:10.1186/s12879-017-2420-y.
[54] McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21: 239-245, doi:10.1080/00401706.1979.10489755. · Zbl 0415.62011
[55] McKinley, T. J., Vernon, I., Andrianakis, I., McCreesh, N., Oakley, J. E., Nsubuga, R., Goldstein, M., and White, R. G. (2018). Approximate Bayesian computation and simulation-based inference for complex stochastic epidemic models. Stat. Sci., 33: 4-18, doi:10.1214/17-sts618. · Zbl 1407.62406
[56] Mobius, W. and Laan, L. (2015). Physical and mathematical modelling in experimental papers. Cell, 163: 1577-1583, doi:10.1016/j.cell.2015.12.006.
[57] Mohamed, L., Calderhead, B., Filippone, M., Christie, M., and Girolami, M. (2012). Population MCMC methods for history matching and uncertainty quantification. Comput. Geosci., 16: 423-436, doi:10.1007/s10596-011-9232-8.
[58] Montgomery, D. C. (2009). Design and analysis of experiments. Wiley.
[59] Moore, S., Zhang, X., Liu, J., and Lindsey, K. (2015a). Modelling plant hormone gradients. eLS: 1-10, doi:10.1002/9780470015902.a0023733.
[60] Moore, S., Zhang, X., Liu, J., and Lindsey, K. (2015b). Some fundamental aspects of modeling auxin patterning in the context of auxin-ethylene-cytokinin crosstalk. Plant Signal. Behav., 10: e1056424. PMID: 26237293, doi:10.1080/15592324.2015.1056424.
[61] Moore, S., Zhang, X., Mudge, A., Rowe, J. H., Topping, J. F., Liu, J., and Lindsey, K. (2015c). Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in arabidopsis thaliana wild-type and mutant roots. New Phytol., 207: 1110-1122, doi:10.1111/nph.13421.
[62] Moore, S., Liu, J., Zhang, X., and Lindsey, K. (2017). A recovery principle provides insight into auxin pattern control in the Arabidopsis root. Sci. Rep., 7, doi:10.1038/srep43004.
[63] Neal, R. M. (1997). Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Tech. rept. University of Toronto.
[64] Nott, D. J., Fan, Y., Marshall, L., and Sisson, S. A. (2014). Approximate Bayesian computation and Bayes’ linear analysis: Toward high-dimensional ABC. J. Comput. Graph Stat., 23: 65-86, doi:10.1080/10618600.2012.751874.
[65] O’Hagan, A. (1987). Bayes linear estimators for randomized response models. J. Am. Stat. Assoc., 82: 580-585, doi:10.1080/01621459.1987.10478469. · Zbl 0657.62011
[66] Oliver, D. S. and Chen, Y. (2011). Recent progress on reservoir history matching: a review. Comput. Geosci., 15: 185-221, doi:10.1007/s10596-010-9194-2. · Zbl 1209.86001
[67] Overstall, A. M. and Woods, D. C. (2016). Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model. J. Roy. Stat. Soc. C Appl. Stat., 65, doi:10.1111/rssc.12141.
[68] Picheny, V., Ginsbourger, D., Richet, Y., and Caplin, G. (2013). Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics, 55, doi:10.1080/00401706.2012.707580.
[69] Prangle, D., Everitt, R. G., and Kypraios, T. (2018). A rare event approach to high-dimensional approximate Bayesian computation. Stat. Comput., 28: 819-834, doi:10.1007/s11222-017-9764-4. · Zbl 1384.62099
[70] Pukelsheim, F. (1994). The three sigma rule. Am. Statistician, 48: 88-91, doi:10.1080/00031305.1994.10476030.
[71] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press. http://www.gaussianprocess.org/gpml/. · Zbl 1177.68165
[72] Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The design and analysis of computer experiments. Springer, New York. · Zbl 1041.62068
[73] Smallbone, K., Simeonidis, E., Swainston, N., and Mendes, P. (2010). Towards a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol., 4, doi:10.1186/1752-0509-4-6.
[74] Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian statistics without tears: A sampling-resampling perspective. Am. Statistician, 46: 84-88, doi:10.2307/2684170.
[75] Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P. H. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface, 6: 187-202, doi:10.1098/rsif.2008.0172.
[76] Torres, N. V. and Santos, G. (2015). The (Mathematical) modelling process in biosciences. Front. Genet., 6: 354, doi:10.3389/fgene.2015.00354.
[77] Vernon, I., Goldstein, M., and Bower, R. G. (2010a). Galaxy formation: A Bayesian uncertainty analysis. Bayesian Anal., 5: 619-669, doi:10.1214/10-ba524. · Zbl 1330.85005
[78] Vernon, I., Seheult, A., and Goldstein, M. (2010b). Modular dynamic emulation and internal model discrepancy for a rainfall runoff model. Managing Uncertainty in Complex Models. Durham University, Durham, UK.
[79] Vernon, I., Goldstein, M., and Bower, R. G. (2010c). Rejoinder - galaxy formation: A Bayesian uncertainty analysis. Bayesian Anal., 5: 697-708, doi:10.1214/10-ba524rej. · Zbl 1330.85006
[80] Vernon, I., Goldstein, M., Rowe, J., Topping, J., Liu, J., and Lindsey, K. (2018). Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions. BMC Syst. Biol., 12, doi:10.1186/s12918-017-0484-3.
[81] Wang, X., Nott, D. J., Drovandi, C. C., Mengersen, K., and Evans, M. (2018). Using history matching for prior choice. Technometrics, 60: 445-460, doi:10.1080/00401706.2017.1421587.
[82] Whittle, P. (1958). On the smoothing of probability density functions. J. Roy. Stat. Soc. B Methodol., 20: 334-343, doi:10.1111/j.2517-6161.1958.tb00298.x. · Zbl 0088.12603
[83] Wilkinson, R. D. (2013). Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Stat. Appl. Genet. Mol. Biol., 12: 129-141, doi:10.1515/sagmb-2013-0010.
[84] Wilkinson, R. D. (2014). Accelerating ABC methods using Gaussian processes. In: JMLR: Workshop and conference proceedings, Vol. 33, pp. 1015-1023.
[85] Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian processes for regression. Adv. Neural Inf. Process. Syst., 8: 514-520.
[86] Williamson, D. and Vernon, I. (2013). Efficient uniform designs for multi-wave computer experiments.
[87] Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., and Yamazaki, K. (2013). History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble. Clim. Dynam., 41: 1703-1729, doi:10.1007/s00382-013-1896-4.
[88] Zhang, X., Hou, J., Wang, D., Mu, T., Wu, J., and Lu, X. (2012). An automatic history matching method of reservoir numerical simulation based on improved genetic algorithm. Proceedings to the 29th international workshop on information and electronic engineering, Vol. 29, pp. 3924-3928.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.