×

zbMATH — the first resource for mathematics

Mathematical programming formulations for the alternating current optimal power flow problem. (English) Zbl 07347306
Summary: Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of generating power. Current can either be direct or alternating: while the former yields approximate linear programming formulations, the latter yields formulations of a much more interesting sort: namely, nonconvex nonlinear programs in complex numbers. In this technical survey, we derive formulation variants and relaxations of the alternating current optimal power flow problem.
MSC:
90C26 Nonconvex programming, global optimization
90C90 Applications of mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmadi A, Majumdar A (2014) DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In: 2014 48th annual conference on information sciences and systems (CISS), pp 1-5
[2] Ahmadi, A.; Majumdar, A., DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization, SIAM J Appl Algebra Geometry, 3, 2, 193-230 (2019) · Zbl 1465.90061
[3] Andersson, G., Modelling and Analysis of electric power systems (2008), Zürich: EEH-Power Systems Laboratory, Swiss Federal Institute of Technology (ETH), Zürich
[4] Anstreicher, K., Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming, J Glob Optim, 43, 471-484 (2009) · Zbl 1169.90425
[5] Babaeinejadsarookolaee S, Birchfield A, Christie RD, Coffrin C, DeMarco CL, Diao R, Ferris MC, Fliscounakis S, Greene S, Huang R, Josz C, Korab R, Lesieutre BC, Maeght J, Molzahn DK, Overbye TJ, Panciatici P, Park B, Snodgrass J, Zimmerman R (2019) The power grid library for benchmarking AC optimal power flow algorithms. Technical report. arXiv:1908.02788
[6] Barrows C, Blumsack S, Hines P (2014) Correcting optimal transmission switching for AC power flows. In: 47th Hawaii international conference on system science, pp 2374-2379
[7] Beck, A.; Beck, Y.; Levron, Y.; Shtof, A.; Tetruashvili, L., Globally solving a class of optimal power flow problems in radial networks by tree reduction, J Glob Optim, 72, 373-402 (2018) · Zbl 1414.90343
[8] Bélanger, J.; Dessaint, LA; Kamwa, I., An extended optimal transmission switching algorithm adapted for large networks and hydro-electric context, IEEE Access, 8, 87762-87774 (2020)
[9] Belotti, P.; Lee, J.; Liberti, L.; Margot, F.; Wächter, A., Branching and bounds tightening techniques for non-convex MINLP, Optim Methods Softw, 24, 4, 597-634 (2009) · Zbl 1179.90237
[10] Belotti, P.; Cafieri, S.; Lee, J.; Liberti, L.; Du, D-Z; Pardalos, P.; Thuraisingham, B., Feasibility-based bounds tightening via fixed points, Combinatorial optimization, constraints and applications (COCOA10), 65-76 (2010), New York: Springer, New York · Zbl 1311.90189
[11] Bergen Arthur, R.; Vijay, V., Power systems analysis (2000), Upper Saddle River: Prentice Hall, Upper Saddle River
[12] Bienstock D (2016) Electrical transmission system cascades and vulnerability: an operations research viewpoint. Number 22 in MOS-SIAM optimization. SIAM, Philadelphia · Zbl 1344.90001
[13] Bienstock, D.; Escobar, M., Stochastic defense against complex grid attacks, IEEE Trans Control Netw Syst, 7, 2, 842-854 (2020) · Zbl 07255340
[14] Bienstock D, Muñoz G (2015) Approximate method for AC transmission switching based on a simple relaxation for ACOPF problems. In: 2015 IEEE power and energy society general meeting, pp 1-5
[15] Bienstock, D.; Verma, A., Strong NP-hardness of AC power flows feasibility, Oper Res Lett, 47, 494-501 (2019) · Zbl 07165832
[16] Bonnans, JF, Mathematical study of very high voltage power networks I: the optimal DC power flow problem, SIAM J Optim, 7, 979-990 (1997) · Zbl 0922.49019
[17] Bonnans, JF, Mathematical study of very high voltage power networks II: the AC power flow problem, SIAM J Appl Math, 58, 1547-1567 (1998) · Zbl 0922.49020
[18] Bonnans, JF, Mathematical study of very high voltage power networks II: the optimal AC power flow problem, Comput Optim Appl, 16, 83-101 (2000) · Zbl 0973.49021
[19] Bose, S.; Low, S.; Teeraratkul, T.; Hassibi, B., Equivalent relaxations of optimal power flow, IEEE Trans Autom Control, 60, 3, 729-742 (2015) · Zbl 1360.90187
[20] Brown, WE; Moreno-Centeno, E., Transmission-line switching for load shed prevention via an accelerated linear programming approximation of ac power flows, IEEE Trans Power Syst, 35, 4, 2575-2585 (2020)
[21] Cain M, O’Neill R, Castillo A (2012) History of optimal power flow and formulations. Technical Report Staff Paper, Federal Energy Regulatory Commission
[22] Capitanescu F, Wehenkel L (2014) An AC OPF-based heuristic algorithm for optimal transmission switching. In: 2014 power systems computation conference, pp 1-6
[23] Capitanescu, F.; Glavic, M.; Ernst, D.; Wehenkel, L., Interior-point based algorithms for the solution of optimal power flow problems, Electric Power Syst Res, 77, 5, 508-517 (2007)
[24] Carpentier, J., Contribution á l’étude du dispatching économique, Bull Société Française des Électriciens, 8, 3, 431-447 (1962)
[25] Carpentier, J., Optimal power flows, Int J Electr Power Energy Syst, 1, 1, 3-15 (1979)
[26] Chaojun, G.; Jirutitijaroen, P.; Motani, M., Detecting false data injection attacks in AC state estimation, IEEE Trans Smart Grid, 6, 5, 2476-2483 (2015)
[27] Coffrin C, Gordon D, Scott P (2014) NESTA. The NICTA energy system test case archive. Technical report. arXiv:1411.0359
[28] Coffrin, C.; Hijazi, H.; Van Hentenryck, P., The QC relaxation: a theoretical and computational study on optimal power flow, IEEE Trans Power Syst, 31, 4, 3008-3018 (2016)
[29] Coffrin, C.; Hijazi, H.; Van Hentenryck, P., Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities, IEEE Trans Power Syst, 32, 5, 3549-3558 (2017)
[30] COIN-OR (2006) Introduction to IPOPT: a tutorial for downloading, installing, and using IPOPT
[31] Diamond, S.; Boyd, S., CVXPY: a python-embedded modeling language for convex optimization, J Mach Learn Res, 17, 1-5 (2016) · Zbl 1360.90008
[32] Diestel, R., Graph minors, 347-391 (2017), Berlin: Springer, Berlin
[33] Domahidi A, Chu E, Boyd S (2013) ECOS: an SOCP solver for embedded systems. In: Proceedings of European control conference, ECC, Piscataway. IEEE
[34] Fisher, EB; O’Neill, R.; Ferris, MC, Optimal transmission switching, IEEE Trans Power Syst, 23, 3, 1346-1355 (2008)
[35] Fourer, R.; Gay, D., The AMPL book (2002), Pacific Grove: Duxbury Press, Pacific Grove
[36] Frank, S.; Steponavice, I.; Rebennack, S., Optimal power flow: a bibliographic survey I. Formulations and deterministic methods, Energy Syst, 3, 221-258 (2012)
[37] Frank, S.; Steponavice, I.; Rebennack, S., Optimal power flow: a bibliographic survey II. Non-deterministic and hybrid methods, Energy Syst, 3, 259-289 (2012)
[38] Ghaddar, B.; Marecek, J.; Mevissen, M., Optimal power flow as a polynomial optimization problem, IEEE Trans Power Syst, 31, 1, 539-546 (2016)
[39] Gilbert J-C, Josz C (2017) Plea for a semidefinite optimization solver in complex numbers. Technical Report hal-01422932, HAL Archives-Ouvertes
[40] Gill PE (1999) User’s guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR, Stanford University, California
[41] Gleixner, AM; Berthold, T.; Müller, B.; Weltge, S., Three enhancements for optimization-based bound tightening, J Glob Optim, 67, 4, 731-757 (2017) · Zbl 1369.90106
[42] Glover, JD; Sarma, MS; Overbye, TJ, Power systems analysis and design (2008), Stamford: Cengage Learning, Stamford
[43] Gómez Expósito, A.; Romero Ramos, E., Reliable load flow technique for radial distribution networks, IEEE Trans Power Syst, 14, 3, 1063-1069 (1999)
[44] Gopinath S, Hijazi H, Weißer T, Nagarajan H, Yetkin M, Sundar K, Bent R (2020) Proving global optimality of ACOPF solutions. In: 2020 power systems computation conference, pp 1-6
[45] Hedman, KW; O’Neill, R.; Fisher, EB; Oren, S., Optimal transmission switching-sensitivity analysis and extensions, IEEE Trans Power Syst, 23, 3, 1469-1479 (2008)
[46] Henneaux, P.; Kirschen, DS, Probabilistic security analysis of optimal transmission switching, IEEE Trans Power Syst, 31, 1, 508-517 (2016)
[47] Hijazi H, Coffrin C, Van Hentenryck P (2016) Polynomial SDP cuts for optimal power flow. In: 2016 power systems computation conference, pp 1-7
[48] Hijazi, H.; Coffrin, C.; Van Hentenryck, P., Convex quadratic relaxations for mixed-integer nonlinear programs in power systems, Math Program Comput, 9, 321-367 (2017) · Zbl 1387.90158
[49] Huneault, M.; Galiana, F., A survey of the optimal power flow literature, IEEE Trans Power Syst, 6, 2, 762-770 (1991)
[50] Jabr, R., Radial distribution load flow using conic programming, IEEE Trans Power Syst, 21, 3, 1458-1459 (2006)
[51] Jabr, R., A conic quadratic format for the load flow equations of meshed networks, IEEE Trans Power Syst, 22, 4, 2285-2286 (2007)
[52] Jabr, R., Optimal power flow using an extended conic quadratic formulation, IEEE Trans Power Syst, 23, 3, 1000-1008 (2008)
[53] Jabr, R., Exploiting sparsity in SDP relaxations of the OPF problem, IEEE Trans Power Syst, 27, 2, 1138-1139 (2012)
[54] Khanabadi M, Ghasemi H (2011) Transmission congestion management through optimal transmission switching. In: 2011 IEEE power and energy society general meeting, pp 1-5
[55] Khanabadi, M.; Ghasemi, H.; Doostizadeh, M., Optimal transmission switching considering voltage security and N-1 contingency analysis, IEEE Trans Power Syst, 28, 1, 542-550 (2013)
[56] Kocuk, B.; Dey, S.; Sun, XA, Strong SOCP relaxations for the optimal power flow problem, Oper Res, 64, 6, 1177-1196 (2016) · Zbl 1354.90154
[57] Kocuk, B.; Dey, S.; Sun, XA, New formulation and strong MISOCP relaxations for AC optimal transmission switching problem, IEEE Trans Power Syst, 32, 6, 4161-4170 (2017)
[58] Kocuk, B.; Dey, S.; Sun, XA, Matrix minor reformulation and SOCP-based spatial branch-and-cut method for the AC optimal power flow problem, Math Program Comput, 10, 4, 557-569 (2018) · Zbl 1411.90249
[59] Kuang, X.; Ghaddar, B.; Naoum-Sawaya, J.; Zuluaga, L., Alternative LP and SOCP hierarchies for ACOPF problems, IEEE Trans Power Syst, 32, 4, 2828-2836 (2016)
[60] Lan, T.; Zhou, Z.; Huang, GM, Modeling and numerical analysis of stochastic optimal transmission switching with DCOPF and ACOPF, IFAC-PapersOnLine, 51, 28, 126-131 (2018)
[61] Lasserre, J., Moments and sums of squares for polynomial optimization and related problems, J Glob Optim, 45, 39-61 (2009) · Zbl 1177.90324
[62] Lavaei, J.; Low, S., Zero duality gap in optimal power flow problem, IEEE Trans Power Syst, 27, 1, 92-107 (2012)
[63] Lesieutre BC, Molzahn DK, Borden AR, DeMarco CL (2011) Examining the limits of the application of semidefinite programming to power flow problems. In: 2011 49th annual allerton conference on communication, control, and computing (Allerton), pp 1492-1499
[64] Liu, X.; Li, Z., False data attacks against AC state estimation with incomplete network information, IEEE Trans Smart Grid, 8, 5, 2239-2248 (2017)
[65] Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the international symposium of computer-aided control systems design, volume 1 of CACSD, Piscataway. IEEE
[66] Low S (2013) Convex relaxation of optimal power flow: a tutorial. In: 2013 IREP symposium bulk power system dynamics and control—IX optimization, security and control of the emerging power grid, pp 1-15
[67] Low, S., Convex relaxation of optimal power flow—part I: formulations and equivalence, IEEE Trans Control Netw Syst, 1, 1, 15-27 (2014) · Zbl 1370.90043
[68] Low, S., Convex relaxation of optimal power flow—part II: exactness, IEEE Trans Control Netw Syst, 1, 2, 177-189 (2014) · Zbl 1370.90044
[69] Lu, M.; Nagarajan, H.; Yamangil, E.; Bent, R.; Backhaus, S.; Barnes, A., Optimal transmission line switching under geomagnetic disturbances, IEEE Trans Power Syst, 33, 3, 2539-2550 (2018)
[70] Madani, R.; Ashraphijuo, M.; Lavaei, J., Promises of conic relaxation for contingency-constrained optimal power flow problem, IEEE Trans Power Syst, 31, 2, 1297-1307 (2016)
[71] McCormick, GP, Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems, Math Program, 10, 146-175 (1976) · Zbl 0349.90100
[72] Messine F (1997) Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution de problèmes avec contraintes (in French). Ph.D. thesis, Institut National Polytechnique de Toulouse
[73] Meurer, A.; Smith, C.; Paprocki, M.; Čertík, O.; Kirpichev, S.; Rocklin, M.; Kumar, A.; Ivanov, S.; Moore, J.; Singh, S.; Rathnayake, T.; Vig, S.; Granger, B.; Muller, R.; Bonazzi, F.; Gupta, H.; Vats, S.; Johansson, F.; Pedregosa, F.; Curry, M.; Terrel, A.; Roučka, Š.; Saboo, A.; Fernando, I.; Kulal, S.; Cimrman, R.; Scopatz, A., SymPy: symbolic computing in Python, PeerJ Comput Sci, 3, e103 (2017)
[74] Molzahn DK, Hiskens IA (2014) Moment-based relaxation of the optimal power flow problem. In: 2014 power systems computation conference, pp 1-7
[75] Molzahn, DK; Hiskens, IA, Sparsity-exploiting moment-based relaxations of the optimal power flow problem, IEEE Trans Power Syst, 30, 6, 3168-3180 (2015)
[76] Molzahn, DK; Hiskens, IA, A survey of relaxations and approximations of the power flow equations, Found Trends® Electric Energy Syst, 4, 1-2, 1-221 (2019)
[77] Molzahn, DK; Holzer, JT; Lesieutre, BC; DeMarco, CL, Implementation of a large-scale optimal power flow solver based on semidefinite programming, IEEE Trans Power Syst, 28, 4, 3987-3998 (2013)
[78] Molzahn, DK; Lesieutre, BC; DeMarco, CL, A sufficient condition for global optimality of solutions to the optimal power flow problem, IEEE Trans Power Syst, 29, 2, 978-979 (2014)
[79] Momoh, JA; El-Hawary, ME; Adapa, R., A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches, IEEE Trans Power Syst, 14, 1, 96-104 (1999)
[80] Momoh, JA; El-Hawary, ME; Adapa, R., A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods, IEEE Trans Power Syst, 14, 1, 105-111 (1999)
[81] Monticelli, A., Power flow equations, 63-102 (1999), Boston: Springer, Boston
[82] Mosek ApS (2016) The mosek manual, Version 8
[83] Potluri T, Hedman KW (2012) Impacts of topology control on the ACOPF. In: 2012 IEEE power and energy society general meeting, pp 1-7
[84] Putinar, M.; Lasserre, JB, Positive polynomials and their applications (book review), Found Comput Math, 11, 4, 489-497 (2011)
[85] Rider, MJ; Paucar, VL; Garcia, AV, Enhanced higher-order interior-point method to minimise active power losses in electric energy systems, IEE Proc Gener Transm Distrib, 151, 4, 517-525 (2004)
[86] Ruiz M, Maeght J, Marié A, Panciatici P, Renaud A (2014) A progressive method to solve large-scale AC optimal power flow with discrete variables and control of the feasibility. In: Proceedings of the power systems computation conference, volume 18 of PSCC, Piscataway. IEEE
[87] Sahinidis NV, Tawarmalani M (2005) BARON 7.2.5: global optimization of mixed-integer nonlinear programs, user’s manual
[88] Salgado, E.; Gentile, C.; Liberti, L.; Daniele, P.; Scrimali, L., Perspective cuts for the ACOPF with generators, New trends in emerging complex real-life problems, volume 1 of AIRO series, 451-461 (2018), New York: Springer, New York
[89] Salgado E, Scozzari A, Tardella F, Liberti L (2018b) Alternating current optimal power flow with generator selection. In: Lee J, Rinaldi G, Mahjoub R (eds) Combinatorial optimization (proceedings of ISCO 2018), volume 10856 of LNCS, pp 364-375 · Zbl 1403.90647
[90] Shectman, JP; Sahinidis, NV, A finite algorithm for global minimization of separable concave programs, J Glob Optim, 12, 1-36 (1998) · Zbl 0906.90159
[91] Sherali, HD; Alameddine, A., A new reformulation-linearization technique for bilinear programming problems, J Glob Optim, 2, 379-410 (1992) · Zbl 0791.90056
[92] Soltan S, Zussman G (July 2017) Power grid state estimation after a cyber-physical attack under the AC power flow model. In: 2017 IEEE power energy society general meeting, pp 1-5
[93] Soroush, M.; Fuller, JD, Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF, IEEE Trans Power Syst, 29, 2, 924-932 (2014)
[94] Sridhar, S.; Hahn, A.; Govindarasu, M., Cyber-physical system security for the electric power grid, Proc IEEE, 100, 1, 210-224 (2012)
[95] The MathWorks, Inc., Natick, MA (2017) MATLAB R2017a
[96] Tinney, WF; Hart, CE, Power flow solution by Newton’s method, IEEE Trans Power Apparatus Syst, PAS-86, 11, 1449-1460 (1967)
[97] Torres, GL; Quintana, VH, An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates, IEEE Trans Power Syst, 13, 4, 1211-1218 (1998)
[98] Van Ness, JE; Griffin, JH, Elimination methods for load-flow studies, Trans Am Inst Electr Eng Part III Power Apparatus Syst, 80, 3, 299-302 (1961)
[99] van Rossum G et al. (2019) Python language reference, version 3. Python Software Foundation
[100] Wang, H.; Murillo-Sánchez, C.; Zimmermann, R.; Thomas, R., On computational issues of market-based optimal power flow, IEEE Trans Power Syst, 22, 3, 1185-1193 (2007)
[101] Wei, H.; Sasaki, H.; Kubokawa, J.; Yokoyama, R., An interior point nonlinear programming for optimal power flow problems with a novel data structure, IEEE Trans Power Syst, 13, 3, 870-877 (1998)
[102] Zamora, JM; Grossmann, IE, A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms, J Glob Optim, 14, 217-249 (1999) · Zbl 0949.90097
[103] Zhao, B.; Hu, Z.; Zhou, Q.; Zhang, H.; Song, Y., Optimal transmission switching to eliminate voltage violations during light-load periods using decomposition approach, J Mod Power Syst Clean Energy, 7, 2, 297-308 (2019)
[104] Zimmermann R, Murillo-Sánchez C (2018) MatPower 7.0b1 user’s manual. Power Systems Engineering Research Center
[105] Zimmermann, R.; Murillo-Sanchez, C.; Thomas, R., MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education, IEEE Trans Power Syst, 26, 1, 12-19 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.