zbMATH — the first resource for mathematics

Adaptive two- and three-dimensional multiresolution computations of resistive magnetohydrodynamics. (English) Zbl 1465.65083
The authors combine the finite volume method with an adaptive MR (Mesh Refinement) to solve numerically the resistive magnetohydrodynamic (MHD) equations. Fully adaptive computations of the resistive MHD equations are presented in two and three space dimensions using a finite volume discretization on locally refined dyadic grids. Divergence cleaning is used to control the incompressibility constraint of the magnetic field. For automatic grid adaptation a cell-averaged multiresolution analysis is applied which guarantees the precision of the adaptive computations, while reducing CPU time and memory requirements. Some discusions are dealt with issues of the open source code CARMEN-MHD. Several numerical tests are presented to illustrate the precision and efficiency of CARMEN-MHD.
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65T60 Numerical methods for wavelets
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI
[1] Berger, MJ; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84 (1989) · Zbl 0665.76070
[2] Berger, MJ; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 3, 484-512 (1984) · Zbl 0536.65071
[3] Bihari, BL; Harten, A., Multiresolution schemes for the numerical solution of 2-D conservation laws i, SIAM J. Sci. Comput., 18, 2, 315-354 (1997) · Zbl 0878.35007
[4] Chiavassa, G.; Donat, R., Point value multiscale algorithms for 2D compressible flows, SIAM J. Sci. Comput., 23, 3, 805-823 (2001) · Zbl 1043.76046
[5] Cohen, A., Numerical Analysis of Wavelet Methods (2003), Paris: Elsevier, Paris · Zbl 1038.65151
[6] Cohen, A.; Dyn, N.; Hecht, F.; Mirebeau, J., Adaptive multiresolution analysis based on anisotropic triangulations, Math. Comput., 81, 278, 789-810 (2012) · Zbl 1242.65293
[7] Cohen, A.; Dyn, N.; Kaber, S.; Postel, M., Multiresolution schemes on triangles for scalar conservation laws, J. Comput. Phys., 161, 264-286 (2000) · Zbl 0959.65105
[8] Cohen, A.; Kaber, SM; Müller, S.; Postel, M., Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comput., 72, 241, 183-225 (2003) · Zbl 1010.65035
[9] Dai, W.; Woodward, PR, A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. Comput. Phys., 142, 2, 331-369 (1998) · Zbl 0932.76048
[10] Dedner, A.; Kemm, F.; Kröner, D.; Munz, CD; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[11] Deiterding, R.; Domingues, MO; Gomes, SM; Roussel, O.; Schneider, K., Adaptive multiresolution or adaptive mesh refinement: A case study for 2D Euler equations, ESAIM Proceedings, 29, 28-42 (2009) · Zbl 1301.76058
[12] Deiterding, R.; Domingues, MO; Gomes, SM; Schneider, K., Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible Euler equations, SIAM J. Sci. Comput., 38, 5, S173-S193 (2016) · Zbl 1457.65069
[13] Domingues, MO; Deiterding, R.; Lopes, MM; Gomes, AKF; Mendes, O.; Schneider, K., Wavelet-based parallel dynamic mesh adaptation for magnetohydrodynamics in the AMROC framework, Comput Fluids, 190, 374-381 (2019) · Zbl 07083218
[14] Domingues, MO; Gomes, AKF; Gomes, S.; Mendes, O.; Di Pierro, B.; Schneider, K., Extended generalized lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods, ESAIM Proc., 43, 95-107 (2013) · Zbl 1329.76202
[15] Domingues, MO; Gomes, SM; Roussel, O.; Schneider, K., Adaptive multiresolution methods, ESAIM Proc., 34, 1-96 (2011) · Zbl 1302.65185
[16] Fambri, F.; Dumbser, M.; Zanotti, O., Space-time adaptive ADER-DG schemes for dissipative flows: Compressible navier-Stokes and resistive MHDx equations, Comput. Phys. Commun., 220, 297-318 (2017)
[17] Feng, X., Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere (2020), Berlin: Springer, Berlin
[18] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, FX; Zingale, M.; Lamb, DQ; MacNeice, P.; Rosner, R.; Truran, JW; Tufo, H., FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, Astrophys. J. Suppl. Ser., 131, 273-334 (2000)
[19] Goedbloed, JP; Poedts, S., Principles of Magnetohydrodynamics (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1407.82002
[20] Gomes, A.K.F.: Análise multirresolução adaptativa no contexto da resolução numérica de um modelo de magnetohidrodinâmica ideal. Master’s thesis, Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos (2012)
[21] Gomes, AKF, Simulação Numérica De Um Modelo Magneto-Hidrodinâmico Multidimensional No Contexto Da Multirresoluç áo Adaptativa Por MáDias Celulares. Ph.D. Thesis (2018), São José dos Campos: Instituto Nacional de Pesquisas Espaciais, São José dos Campos
[22] Gomes, AKF; Domingues, MO; Mendes, O., Ideal and resistive magnetohydrodynamic two-dimensional simulation of the Kelvin-Helmholtz instability in the context of adaptive multiresolution analysis, TEMA (Sã,o Carlos), 18, 2, 317-333 (2017)
[23] Gomes, AKF; Domingues, MO; Mendes, O.; Schneider, K., On the verification of adaptive three-dimensional multiresolution computations of the magnetohydrodynamic equations, J Appl Nonlinear Dyn, 7, 231-242 (2018)
[24] Gomes, AKF; Domingues, MO; Schneider, K.; Mendes, O.; Deiterding, R., An adaptive multiresolution method for ideal magnetohydrodynamics using divergence cleaning with parabolic-hyperbolic correction, Appl. Numer. Math., 95, 199-213 (2015) · Zbl 1320.76080
[25] Groen, D.; Zasada, SJ; Coveney, PV, Survey of multiscale and multiphysics applications and communities, Comput Sci Eng, 16, 2, 34-43 (2014)
[26] Harten, A., Discrete multi-resolution analysis and generalized wavelets, Appl. Numer. Math., 12, 1, 153-192 (1993) · Zbl 0777.65004
[27] Harten, A., Adaptive multiresolution schemes for shock computations, J. Comput. Phys., 115, 2, 319-338 (1994) · Zbl 0925.65151
[28] Harten, A., Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Commun. Pure Appl. Math., 48, 12, 1305-1342 (1995) · Zbl 0860.65078
[29] Harten, A., Multiresolution representation of data: a general framework, SIAM J Numer Anal, 33, 3, 385-394 (1996) · Zbl 0861.65130
[30] Hopkins, PF; Raives, MJ, Accurate, meshless methods for magnetohydrodynamics, Mon. Not. R. Astron. Soc., 455, 1, 51-88 (2016)
[31] Jardin, SC, Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas, J. Comput. Phys., 231, 3, 822-838 (2012) · Zbl 1452.76002
[32] Jiang, GS; Wu, CC, A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150, 2, 561-594 (1999) · Zbl 0937.76051
[33] Jiang, RL; Fang, C.; Chen, PF, A new MHD code with adaptive mesh refinement and parallelization for astrophysics, Comput. Phys. Commun., 183, 8, 1617-1633 (2012) · Zbl 1307.85001
[34] Kaibara, M.K., Gomes, S.M.: A fully adaptive multiresolution scheme for shock computations. In: Godunov methods: theory and applications, pp 497-503. Springer US, Boston (2001) · Zbl 1064.76589
[35] Kleimann, J.; Kopp, A.; Fichtner, H.; Grauer, R.; Germaschewski, K., Three-dimensional mhd high-resolution computations with CWENO employing adaptive mesh refinement, Comput. Phys. Commun., 158, 1, 47-56 (2004) · Zbl 1196.76085
[36] Kolomenskiy, D., Onishi, R., Uehara, H.: Data compression for environmental flow simulations. arXiv:1810.04822 (2018)
[37] Koskinen, HEJ; Baker, DN; Balogh, A.; Gombosi, T.; Veronig, A.; von Steiger, R., Achievements and challenges in the science of space weather, Space Sci. Rev., 212, 1137-1157 (2017)
[38] LeVeque, RJ, Finite Volume Methods for Hyperbolic Problems (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1010.65040
[39] Londrillo, P.; Del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 1, 508 (2000)
[40] Lopes, MM; Deiterding, R.; Gomes, AKF; Mendes, O.; Domingues, MO, An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement, Comput Fluids, 173, 293-298 (2018) · Zbl 1410.76252
[41] Mignone, A.; Tzeferacos, P., A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme, J. Comput. Phys., 229, 6, 2117-2138 (2010) · Zbl 1303.76142
[42] Miyoshi, T.; Kusano, K., A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 208, 315-344 (2005) · Zbl 1114.76378
[43] Morley, S.K.: Challenges and opportunities in magnetospheric space weather prediction. Space Weather 18 e2018SW002108 (2019)
[44] Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. In: Lectures Notes in Computational Science and Engineering, vol. 27. Springer, Heidelberg (2003) · Zbl 1016.76004
[45] Orszag, SA; Tang, CM, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 1, 129-143 (1979)
[46] Petschek, HE, Magnetic field annihilation, NASA Special Publication, 50, 425 (1964)
[47] Roussel, O.: Développement d’un algorithme multiresolution adaptatif tridimensionnel pour la résolution des équations aux dérivées partielles paraboliques. Ph.D. thesis, Université de la Méditerranée (2003)
[48] Roussel, O.; Schneider, K.; Tsigulin, A.; Bockhorn, H., A conservative fully adaptative multiresolution algorithm for parabolic PDEs, J. Comput. Phys., 188, 493-523 (2003) · Zbl 1022.65093
[49] Ryu, D.; Miniati, F.; Jones, T.; Frank, A., A divergence-free upwind code for multidimensional magnetohydrodynamic flows, Astrophys. J., 509, 1, 244 (1998)
[50] Schneider, K.; Vasilyev, OV, Wavelet methods in computational fluid dynamics, Annu. Rev. Fluid Mech., 42, 473-503 (2010) · Zbl 1345.76085
[51] Tóth, G.; Van der Holst, B.; Sokolov, IV; De Zeeuw, DL; Gombosi, TI; Fang, F.; Manchester, WB; Meng, X.; Najib, D.; Powell, KG, Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 3, 870-903 (2012)
[52] Touma, R.; Arminjon, P., Central finite volume schemes with constrained transport divergence treatment for three-dimensional ideal MHD, J. Comput. Phys., 212, 2, 617-636 (2006) · Zbl 1161.76523
[53] Van der Holst, B.; Keppens, R.; Meliani, Z., A multidimensional grid-adaptive relativistic magnetofluid code, Comput. Phys. Commun., 179, 9, 617-627 (2008) · Zbl 1197.76085
[54] Van Leer, B., Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme, J Computat Phys, 14, 4, 361-370 (1974) · Zbl 0276.65055
[55] Vanaverbeke, S.; Keppens, R.; Poedts, S., GRADSPMHD: A parallel MHD code based on the sph formalism, Comput. Phys. Commun., 185, 3, 1053-1073 (2014) · Zbl 1360.76011
[56] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting, Comput Fluids, 118, 204-224 (2015) · Zbl 1390.76381
[57] Ziegler, U., The NIRVANA code: Parallel computational MHD with adaptive mesh refinement, Comput. Phys. Commun., 179, 4, 227-244 (2008) · Zbl 1197.76102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.