Alsina, Claudi; García Roig, Jaime L. On some inequalities characterizing the exponential function. (English) Zbl 0735.39006 Arch. Math., Brno 26, No. 2-3, 67-71 (1990). Some inequalities relating the slope of a function and mean values are solved and characterizations of the exponential functions are obtained. In particular, the following two theorems are proved.1. A function \(f:\mathbb{R}\to\mathbb{R}\) satisfies \((f(y)-f(x))/(y- x)\leq(f(x)+f(y))/2\) for all \(x,y\in\mathbb{R}\) such that \(x<y\) iff \(f\) has the form \(f(x)=g(x)e^ x\), \(x\in\mathbb{R}\), where \(g:\mathbb{R}\to\mathbb{R}\) is a non- increasing function.2. Let \(M:[0,+\infty)\times[0,+\infty)\to[0,+\infty)\) be a continuous function such that \(M(x,x)=x\) for all \(x\geq0\). A function \(f:\mathbb{R}\to[0,+\infty)\) satisfies \(M(f(x),f(y))\leq(f(y)-f(x))/(y- x)\leq(f(x)+f(y))/2\) for all \(x,y\in\mathbb{R}\) such that \(x<y\) iff \(f(x)=ce^ x\), \(x\in\mathbb{R}\), where \(c\in[0,+\infty)\). Reviewer: K.Baron (Katowice) Cited in 2 Documents MSC: 39B72 Systems of functional equations and inequalities 26D07 Inequalities involving other types of functions Keywords:functional inequalities in several variables; characterizations of the exponential functions PDFBibTeX XMLCite \textit{C. Alsina} and \textit{J. L. García Roig}, Arch. Math. (Brno) 26, No. 2--3, 67--71 (1990; Zbl 0735.39006) Full Text: EuDML