×

zbMATH — the first resource for mathematics

A posteriori subcell finite volume limiter for general \(P_NP_M\) schemes: applications from gasdynamics to relativistic magnetohydrodynamics. (English) Zbl 07352182
The authors propose a new simple, robust, accurate and computationally efficient limiting strategy for the general family of ADER \(P_NP_M\) schemes, allowing the use of hybrid reconstructed methods (\(N > 0\), \(M > N\) ) in the modeling of discontinuous phenomena. This new approach has been applied to many different systems of hyperbolic conservation laws, providing highly accurate numerical results in all cases. The performance of the class of intermediate \(P_N P_M\) schemes with \(M > N > 0\) is compared with pure the Discontinuous Galerkin (DG) schemes (\(M = N\)). It is remarked that in the most cases the intermediate \(P_N P_M\) schemes lead to reduced computational cost compared with the pure DG methods. A new efficient posteriori subcell finite volume limiting strategy that is valid for the entire class of \(P_NP_M\) schemes is presented.
MSC:
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)
76W05 Magnetohydrodynamics and electrohydrodynamics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alic, D.; Bona, C.; Bona-Casas, C., Towards a gauge-polyvalent numerical relativity code, Phys. Rev. D, 79, 4, 044026 (2009)
[2] Alic, D.; Bona-Casas, C.; Bona, C.; Rezzolla, L.; Palenzuela, C., Conformal and covariant formulation of the Z4 system with constraint-violation damping, Phys. Rev. D, 85, 6, 064040 (2012)
[3] Aloy, MA; Ibáñez, JM; Martí, JM; Müller, E., GENESIS: a high-resolution code for three-dimensional relativistic hydrodynamics, Astrohys. J. Suppl., 122, 151-166 (1999)
[4] Baer, M.; Nunziato, J., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, J. Multiphase Flow, 12, 861-889 (1986) · Zbl 0609.76114
[5] Balsara, D., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser., 132, 83-101 (2001)
[6] Balsara, D., Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 149-184 (2004)
[7] Balsara, D.; Dumbser, M., Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys., 299, 687-715 (2015) · Zbl 1351.76092
[8] Balsara, D.; Shu, C., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[9] Balsara, D.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292 (1999) · Zbl 0936.76051
[10] Banyuls, F.; Font, JA; Ibáñez, JM; Martí, JM; Miralles, JA, Numerical 3 + 1 general-relativistic hydrodynamics: a local characteristic approach, Astrophys. J., 476, 221 (1997)
[11] Bassi, C.; Bonaventura, L.; Busto, S.; Dumbser, M., A hyperbolic reformulation of the Serre-Green-Naghdi model for general bottom topographies, Comput. Fluids, 212, 104716 (2020)
[12] Bassi, C.; Busto, S.; Dumbser, M., High order ADER-DG schemes for the simulation of linear seismic waves induced by nonlinear dispersive free-surface water waves, Appl. Numer. Math., 158, 236-263 (2020) · Zbl 1447.74042
[13] Begelman, MC; Blandford, RD; Rees, MJ, Theory of extragalactic radio sources, Rev. Mod. Phys., 56, 255-351 (1984)
[14] Berger, MJ; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84 (1989) · Zbl 0665.76070
[15] Berger, MJ; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484 (1984) · Zbl 0536.65071
[16] Boscheri, W., An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, 84, 2, 76-106 (2017)
[17] Boscheri, W.; Balsara, D., High order direct Arbitrary-Lagrangian-Eulerian (ALE) PNPM schemes with WENO adaptive-order reconstruction on unstructured meshes, J. Comput. Phys., 398, 108899 (2019)
[18] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 1174-1206 (2013) · Zbl 1388.65075
[19] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes, J. Comput. Phys., 346, 449-479 (2017) · Zbl 1378.76044
[20] Boscheri, W.; Dumbser, M.; Balsara, D., High-order ADER-WENO ALE schemes on unstructured triangular meshes-application of several node solvers to hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, 76, 10, 737-778 (2014)
[21] Boscheri, W.; Loubère, R., High order accurate direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for non-conservative hyperbolic systems with stiff source terms, Commun. Comput. Phys., 21, 271-312 (2017) · Zbl 1388.65076
[22] Boscheri, W.; Loubère, R.; Dumbser, M., Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws, J. Comput. Phys., 292, 56-87 (2015) · Zbl 1349.76312
[23] Boscheri, W.; Semplice, M.; Dumbser, M., Central WENO subcell finite volume limiters for ADER discontinuous Galerkin schemes on fixed and moving unstructured meshes, Commun. Comput. Phys., 25, 311-346 (2019)
[24] Bungartz, H.; Mehl, M.; Neckel, T.; Weinzierl, T., The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids, Comput. Mech., 46, 103-114 (2010) · Zbl 1301.76056
[25] Busto, S.; Chiocchetti, S.; Dumbser, M.; Gaburro, E.; Peshkov, I., High order ADER schemes for continuum mechanics, Front. Phys., 8, 32 (2020)
[26] Busto, S.; Toro, E.; Vázquez-Cendón, E., Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations, J. Comput. Phys., 327, 553-575 (2016) · Zbl 1422.65203
[27] Casulli, V., Semi-implicit finite difference methods for the two-dimensional shallow water equations, J. Comput. Phys., 86, 56-74 (1990) · Zbl 0681.76022
[28] Chiravalle, V.; Morgan, N., A 3D Lagrangian cell-centered hydrodynamic method with higher-order reconstructions for gas and solid dynamics, Comput. Math. Appl., 78, 2, 298-317 (2019) · Zbl 1442.65193
[29] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws-multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050 (2011) · Zbl 1218.65091
[30] Dahlburg, RB; Picone, JM, Evolution of the Orszag-Tang vortex system in a compressible medium. I. Initial average subsonic flow, Phys. Fluids B, 1, 2153-2171 (1989)
[31] Dedner, A.; Kemm, F.; Kröner, D.; Munz, CD; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[32] de la Rosa, JN; Munz, CD, Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics, Comput. Phys. Commun., 222, 113-135 (2018)
[33] Del Zanna, L.; Zanotti, O.; Bucciantini, N.; Londrillo, P., ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. Astrophys., 473, 11-30 (2007)
[34] Dhaouadi, F., Favrie, N., Gavrilyuk, S.: Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation. In: Studies in Applied Mathematics, pp. 1-20 (2018) · Zbl 1418.35335
[35] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149
[36] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-392 (2013)
[37] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput. Fluids, 39, 60-76 (2010) · Zbl 1242.76161
[38] Dumbser, M., A diffuse interface method for complex three-dimensional free surface flows, Comput. Methods Appl. Mech. Eng., 257, 47-64 (2013) · Zbl 1286.76099
[39] Dumbser, M.; Balsara, D., A new, efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[40] Dumbser, M.; Balsara, D.; Toro, E.; Munz, C., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[41] Dumbser, M.; Balsara, DS; Tavelli, M.; Fambri, F., A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics, Int. J. Numer. Methods Fluids, 89, 1-2, 16-42 (2019)
[42] Dumbser, M.; Fambri, F.; Gaburro, E.; Reinarz, A., On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations, J. Comput. Phys., 404, 109088 (2020)
[43] Dumbser, M.; Fambri, F.; Tavelli, M.; Bader, M.; Weinzierl, T., Efficient implementation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE engine, Axioms, 7, 3, 63 (2018) · Zbl 1434.65179
[44] Dumbser, M.; Guercilena, F.; Köppel, S.; Rezzolla, L.; Zanotti, O., Conformal and covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes, Phys. Rev. D, 97, 084053 (2018)
[45] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 268, 359-387 (2014) · Zbl 1295.65088
[46] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077
[47] Dumbser, M.; Loubère, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199 (2016) · Zbl 1349.65447
[48] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O., High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids, J. Comput. Phys., 314, 824-862 (2016) · Zbl 1349.76324
[49] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O., High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics, J. Comput. Phys., 348, 298-342 (2017) · Zbl 1349.76324
[50] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, J. Comput. Phys., 228, 6991-7006 (2009) · Zbl 1261.76028
[51] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J. Comput. Phys., 248, 257-286 (2013) · Zbl 1349.76325
[52] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[53] Einfeldt, B.; Munz, CD; Roe, PL; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 2, 273-295 (1991) · Zbl 0709.76102
[54] Escalante, C.; Morales, T., A general non-hydrostatic hyperbolic formulation for Boussinesq dispersive shallow flows and its numerical approximation, J. Sci. Comput., 83, 62 (2020) · Zbl 1435.76015
[55] Fambri, F., Discontinuous Galerkin methods for compressible and incompressible flows on space-time adaptive meshes: toward a novel family of efficient numerical methods for fluid dynamics, Arch. Comput. Methods Eng., 27, 1, 199-283 (2020)
[56] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics, Mon. Notices R. Astron. Soc. (MNRAS), 477, 4543-4564 (2018)
[57] Fambri, F.; Dumbser, M.; Zanotti, O., Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier-Stokes and resistive MHD equations, Comput. Phys. Commun., 220, 297-318 (2017)
[58] Favrie, N.; Gavrilyuk, S., A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves, Nonlinearity, 30, 2718-2736 (2017) · Zbl 1432.65120
[59] Gaburro, E., A unified framework for the solution of hyperbolic PDE systems using high order direct Arbitrary-Lagrangian-Eulerian schemes on moving unstructured meshes with topology change, Arch. Comput. Methods Eng. (2020)
[60] Gaburro, E.; Boscheri, W.; Chiocchetti, S.; Klingenberg, C.; Springel, V.; Dumbser, M., High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes, J. Comput. Phys., 407, 109167 (2020)
[61] Gaburro, E.; Castro, MJ; Dumbser, M., Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity, Mon. Not. R. Astron. Soc., 477, 2, 2251-2275 (2018)
[62] Gaburro, E.; Castro, MJ; Dumbser, M., A well balanced diffuse interface method for complex nonhydrostatic free surface flows, Comput. Fluids, 175, 180-198 (2018) · Zbl 1410.76224
[63] Gaburro, E.; Dumbser, M.; Castro, M., Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes, Comput. Fluids, 159, 254-275 (2017) · Zbl 1390.76433
[64] Godunov, S., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math. USSR Sbornik, 47, 271-306 (1959) · Zbl 0171.46204
[65] Godunov, S.; Romenski, E., Elements of Continuum Mechanics and Conservation Laws (2003), Dordrecht: Kluwer Academic, Dordrecht
[66] Godunov, SK; Romenskii, EI, Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates, J. Appl. Mech. Tech. Phys., 13, 6, 868-884 (1972)
[67] Guermond, JL; Nazarov, M.; Popov, B.; Tomas, I., Second-order invariant domain preserving approximation of the Euler equations using convex limiting, SIAM J. Sci. Comput., 40, 5, A3211-A3239 (2018) · Zbl 1402.65110
[68] Halashi, B.; Luo, H., A reconstructed discontinuous Galerkin method for magnetohydrodynamics on arbitrary grids, J. Comput. Phys., 326, 258-277 (2016) · Zbl 1373.76345
[69] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes. III, J. Comput. Phys., 71, 231-303 (1987) · Zbl 0652.65067
[70] Harten, A.; Osher, S., Uniformly high-order accurate nonoscillatory schemes I, SIAM J. Numer. Anal., 24, 279-309 (1987) · Zbl 0627.65102
[71] Hu, C.; Shu, C., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150, 561-594 (1999) · Zbl 0926.65090
[72] Ji, L.; Xu, Y.; Ryan, J., Accuracy enhancement of the linear convection-diffusion equation in multiple dimensions, Math. Comput., 81, 1929-1950 (2012) · Zbl 1270.65058
[73] Jiang, G.; Shu, C., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[74] Kamm, J., Timmes, F.: On efficient generation of numerically robust Sedov solutions. Technical Report LA-UR-07-2849, LANL (2007)
[75] Kemm, F.; Gaburro, E.; Thein, F.; Dumbser, M., A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced baer-nunziato model, Comput. Fluids, 204, 104536 (2020) · Zbl 07200216
[76] Khokhlov, A., Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 143, 2, 519-543 (1998) · Zbl 0934.76057
[77] King, J.; Mirzaee, H.; Ryan, J.; Kirby, R., Smoothness-increasing accuracy-conserving SIAC) filtering for discontinuous Galerkin solutions: improved errors versus higher-order accuracy, J. Sci. Comput., 53, 129-149 (2012) · Zbl 1254.65106
[78] Komissarov, SS, On the properties of Alfvén waves in relativistic magnetohydrodynamics, Phys. Lett. A, 232, 435-442 (1997) · Zbl 1053.85500
[79] Komissarov, SS, A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc., 303, 343-366 (1999)
[80] Kouveliotou, C.; Meegan, CA; Fishman, GJ; Bhat, NP; Briggs, MS; Koshut, TM; Paciesas, WS; Pendleton, GN, Identification of two classes of gamma-ray bursts, Astrophys. J., 413, L101-L104 (1993)
[81] Lax, P., Weak solutions of nonlinear hyperbolic equations and their numerical approximation, Commun. Pure Appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[82] van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: Proceedings of 17th AIAA Computational Fluid Dynamics Conference, 6-9 June 2005, AIAA-2005-5108 (2005)
[83] Leismann, T.; Antón, L.; Aloy, MA; Müller, E.; Martí, JM; Miralles, JA; Ibáñez, JM, Relativistic MHD simulations of extragalactic jets, Astron. Astrophys., 436, 503-526 (2005)
[84] Löhner, R., An adaptive finite element scheme for transient problems in CFD, Comput. Methods Appl. Mech. Eng., 61, 323-338 (1987) · Zbl 0611.73079
[85] Loubere, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 3, 718-763 (2014) · Zbl 1373.76137
[86] Loubère, R.; Maire, P.; Váchal, P., 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, Int. J. Numer. Methods Fluids, 72, 22-42 (2013)
[87] Luo, H.; Luo, L.; Nourgaliev, R.; Mousseau, V.; Dinh, N., A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, J. Comput. Phys., 229, 6961-6978 (2010) · Zbl 1425.35138
[88] Luo, H.; Xia, Y.; Spiegel, S.; Nourgaliev, R.; Jiang, Z., A reconstructed discontinuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on tetrahedral grids, J. Comput. Phys., 236, 477-492 (2013) · Zbl 1286.65125
[89] Michel, F.C.: Theory of neutron star magnetospheres (1991)
[90] Mirzaee, H.; King, J.; Ryan, J.; Kirby, R., Smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous Galerkin solutions over unstructured triangular meshes, SIAM J. Sci. Comput., 35, A212-A230 (2013) · Zbl 1264.65162
[91] Munz, C.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voss, U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 161, 484-511 (2000) · Zbl 0970.78010
[92] Orszag, SA; Tang, CM, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129 (1979)
[93] Peshkov, I.; Romenski, E., A hyperbolic model for viscous Newtonian flows, Contin. Mech. Thermodyn., 28, 85-104 (2016) · Zbl 1348.76046
[94] Picone, JM; Dahlburg, RB, Evolution of the Orszag-Tang vortex system in a compressible medium. II. Supersonic flow, Phys. Fluids B, 3, 29-44 (1991)
[95] Rannabauer, L.; Dumbser, M.; Bader, M., ADER-DG with a-posteriori finite-volume limiting to simulate tsunamis in a parallel adaptive mesh refinement framework, Comput. Fluids, 173, 299-306 (2018) · Zbl 1410.86006
[96] Reinarz, A., et al.: Exahype: an engine for parallel dynamically adaptive simulations of wave problems. Comput. Phys. Commun. 107251 (2020)
[97] Reinarz, A., Gallard, J.M., Bader, M.: Influence of a-posteriori subcell limiting on fault frequency in higher-order DG schemes. In: 2018 IEEE/ACM 8th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS), pp. 79-86. IEEE (2018)
[98] Romenski, E.; Peshkov, I.; Dumbser, M.; Fambri, F., A new continuum model for general relativistic viscous heat-conducting media, Philos. Trans. R. Soc. A, 378, 2170, 20190175 (2020)
[99] Ryan, J.; Cockburn, B., Local derivative post-processing for the discontinuous Galerkin method, J. Comput. Phys., 228, 8642-8664 (2009) · Zbl 1176.65108
[100] Ryan, J.; Shu, C.; Atkins, H., Extension of a post-processing technique for the discontinuous Galerkin method for hyperbolic equations with applications to an aeroacoustic problem, SIAM J. Sci. Comput., 26, 821-843 (2005) · Zbl 1137.65414
[101] Sedov, L., Similarity and Dimensional Methods in Mechanics (1959), New York: Academic Press, New York · Zbl 0121.18504
[102] Shi, J.; Zhang, YT; Shu, CW, Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., 186, 2, 690-696 (2003) · Zbl 1047.76081
[103] Shu, C.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic Conservation Laws. NASA/CR-97-206253 ICASE Report No. 97-65 (1997) · Zbl 0927.65111
[104] Shu, C.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[105] Shu, CW, High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments, J. Comput. Phys., 316, 598-613 (2016) · Zbl 1349.65486
[106] Sonntag, M.; Munz, C.; Fuhrmann, J.; Ohlberger, M.; Rohde, C., Shock capturing for discontinuous Galerkin methods using finite volume subcells, Finite Volumes for Complex Applications VII, 945-953 (2014), Berlin: Springer, Berlin · Zbl 1426.76429
[107] Stroud, A., Approximate Calculation of Multiple Integrals (1971), Englewood Cliffs: Prentice-Hall Inc., Englewood Cliffs · Zbl 0379.65013
[108] Tavelli, M.; Dumbser, M., A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes, Appl. Math. Comput., 234, 623-644 (2014) · Zbl 1298.76120
[109] Titarev, V.; Toro, E., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (2002) · Zbl 1024.76028
[110] Titarev, V.; Toro, E., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736 (2005) · Zbl 1060.65641
[111] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Berlin: Springer, Berlin · Zbl 0923.76004
[112] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009), Berlin: Springer, Berlin · Zbl 1227.76006
[113] Toro, E., Titarev, V.: Solution of the generalized Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. 458, 271-281 (2002) · Zbl 1019.35061
[114] Toro, EF; Titarev, VA, Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165 (2006) · Zbl 1087.65590
[115] Toth, G., The div B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 2, 605-652 (2000) · Zbl 0980.76051
[116] Wang, C.; Cheng, J.; Berndt, M.; Carlson, N.; Luo, H., Application of nonlinear Krylov acceleration to a reconstructed discontinuous Galerkin method for compressible flows, Comput. Fluids, 163, 32-49 (2018) · Zbl 1390.76365
[117] Wang, C.; Luo, H.; Shashkov, M., A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation, Comput. Fluids, 202, 104522 (2020) · Zbl 07200200
[118] Wang, C., Luo, H., Shashkov, M.: A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation. Comput. Fluids 202, 104522 (2020) · Zbl 07200200
[119] Wang, X.; Cheng, C.; Luo, H.; Zhao, Q., A reconstructed direct discontinuous Galerkin method for simulating the compressible laminar and turbulent flows on hybrid grids, Comput. Fluids, 168, 216-231 (2018) · Zbl 1390.76377
[120] Weinzierl, T.; Mehl, M., Peano—a traversal and storage scheme for octree-like adaptive Cartesian multiscale grids, SIAM J. Sci. Comput., 33, 2732-2760 (2011) · Zbl 1245.65169
[121] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
[122] Zanna, LD; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. Magnetohydrodynamics, Astron. Astrophys., 400, 397-413 (2003) · Zbl 1222.76122
[123] Zanotti, O.; Fambri, F.; Dumbser, M., Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement, Mon. Not. R. Astron. Soc., 452, 3010-3029 (2015)
[124] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting, Comput. Fluids, 118, 204-224 (2015) · Zbl 1390.76381
[125] Zhang, Y.; Shu, C., Third order WENO scheme on three dimensional tetrahedral meshes, Commun. Comput. Phys., 5, 836-848 (2009) · Zbl 1364.65177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.