zbMATH — the first resource for mathematics

An exponentially-averaged Vasyunin formula. (English) Zbl 07352296
Let \(f_\alpha(t)=\frac{1}{\alpha t}-\frac{1}{e^{\alpha t}-1}\). In the paper under review the authors compute the integral \(\int_0^\infty f_m(t)f_n(t)dt\) for coprime integers \(m,n\geq 1\), where the answer may read as a reciprocity formula for cotangent sums. The work is motivated by studying a probabilistic version of the Nyman-Beurling criterion for the Riemann hypothesis.

11L03 Trigonometric and exponential sums (general theory)
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
11F20 Dedekind eta function, Dedekind sums
Full Text: DOI arXiv
[1] Auli, Juan S.; Bayad, Abdelmejid; Beck, Matthias, Reciprocity theorems for Bettin-Conrey sums, Acta Arith., 181, 4, 297-319 (2017) · Zbl 1422.11088
[2] B\'{a}ez-Duarte, Luis, A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14, 1, 5-11 (2003) · Zbl 1097.11041
[3] B\'{a}ez-Duarte, Luis; Balazard, Michel; Landreau, Bernard; Saias, Eric, Notes sur la fonction \(\zeta\) de Riemann. III, Adv. Math., 149, 1, 130-144 (2000) · Zbl 1008.11032
[4] B\'{a}ez-Duarte, Luis; Balazard, Michel; Landreau, Bernard; Saias, Eric, \'{E}tude de l’autocorr\'{e}lation multiplicative de la fonction “partie fractionnaire”, Ramanujan J., 9, 1-2, 215-240 (2005) · Zbl 1173.11343
[5] M. Balazard, Application d’une formule de Binet, Personal communication, 2018.
[6] Bettin, Sandro; Conrey, Brian, Period functions and cotangent sums, Algebra Number Theory, 7, 1, 215-242 (2013) · Zbl 1291.11111
[7] Bettin, Sandro, On the distribution of a cotangent sum, Int. Math. Res. Not. IMRN, 21, 11419-11432 (2015) · Zbl 1370.11098
[8] Bettin, Sandro; Conrey, John Brian, A reciprocity formula for a cotangent sum, Int. Math. Res. Not. IMRN, 24, 5709-5726 (2013) · Zbl 1293.30078
[9] Beurling, Arne, A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. Sci. U.S.A., 41, 312-314 (1955) · Zbl 0065.30303
[10] S. Darses and E. Hillion, On probabilistic generalizations of the Nyman-Beurling criterion for the zeta function, Preprint, 1805.06733, 2018.
[11] Maier, Helmut; Rassias, Michael Th., Generalizations of a cotangent sum associated to the Estermann zeta function, Commun. Contemp. Math., 18, 1, 1550078, 89 pp. (2016) · Zbl 1346.11045
[12] Nyman, Bertil, On the one-dimensional translation group and semi-group in certain function spaces, 55 pp. (1950), Thesis, University of Uppsala · Zbl 0037.35401
[13] Vasyunin, V. I., On a biorthogonal system associated with the Riemann hypothesis, Algebra i Analiz. St. Petersburg Math. J., 7 7, 3, 405-419 (1996)
[14] Whittaker, E. T.; Watson, G. N., A course of modern analysis, Cambridge Mathematical Library, vi+608 pp. (1996), Cambridge University Press, Cambridge · Zbl 0951.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.