×

zbMATH — the first resource for mathematics

Assessing the risk of disruption of wind turbine operations in Saudi Arabia using Bayesian spatial extremes. (English) Zbl 1466.62448
Summary: Saudi Arabia has been seeking to reduce its dependence on oil by diversifying its energy portfolio, including the largely underused energy potential from wind. However, extreme winds can possibly disrupt the wind turbine operations, thus preventing the stable and continuous production of wind energy. In this study, we assess the risk of disruptions of wind turbine operations, based on return levels with a hierarchical spatial extreme modeling approach for wind speeds in Saudi Arabia. Using a unique Weather Research and Forecasting dataset, we provide the first high-resolution risk assessment of wind extremes under spatial non-stationarity over the country. We account for the spatial dependence with a multivariate intrinsic autoregressive prior at the latent Gaussian process level. The computational efficiency is greatly improved by parallel computing on subregions from spatial clustering, and the maps are smoothed by fitting the model to cluster neighbors. Under the Bayesian hierarchical framework, we measure the uncertainty of return levels from the posterior Markov chain Monto Carlo samples, and produce probability maps of return levels exceeding the cut-out wind speed of wind turbines within their lifetime. The probability maps show that locations in the South of Saudi Arabia and near the Red Sea and the Persian Gulf are at very high risk of disruption of wind turbine operations.
MSC:
62P30 Applications of statistics in engineering and industry; control charts
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62G32 Statistics of extreme values; tail inference
62M30 Inference from spatial processes
62M40 Random fields; image analysis
60F10 Large deviations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banerjee, S.; Carlin, BP; Gelfand, AE, Hierarchical Modeling and Analysis for Spatial Data, 2nd ed. Monographs on Statistics and Applied Probability (2014), Boca Raton: Chapman and Hall/CRC, Boca Raton
[2] Besag, J.; Kooperberg, C., On conditional and intrinsic autoregressions, Biometrika, 82, 4, 733-746 (1995) · Zbl 0899.62123
[3] Besag, J.; Green, P.; Higdon, D.; Mengersen, K., Bayesian computation and stochastic systems, Stat. Sci., 10, 1, 3-41 (1995) · Zbl 0955.62552
[4] Chen, W.; Castruccio, S.; Genton, MG; Crippa, P., Current and future estimates of wind energy potential over Saudi Arabia, J. Geophys. Res.: Atmos., 123, 12, 6443-6459 (2018)
[5] Coles, S., An Introduction to Statistical Modeling of Extreme Values, vol. 208 (2001), Berlin: Springer, Berlin · Zbl 0980.62043
[6] Cooley, D.; Sain, SR, Spatial hierarchical modeling of precipitation extremes from a regional climate model, J. Agric. Biol. Environ. Stat., 15, 3, 381-402 (2010) · Zbl 1306.62262
[7] Cooley, D.; Nychka, D.; Naveau, P., Bayesian spatial modeling of extreme precipitation return levels, J. Am. Stat. Assoc., 102, 479, 824-840 (2007) · Zbl 05564414
[8] Davison, AC; Smith, RL, Models for exceedances over high thresholds, J. R. Stat. Soc. Ser. B (Methodol.), 52, 3, 393-442 (1990) · Zbl 0706.62039
[9] Davison, AC; Padoan, SA; Ribatet, M., Statistical modeling of spatial extremes, Stat. Sci., 27, 2, 161-186 (2012) · Zbl 1330.86021
[10] de Haan, L.; Ferreira, A., Extreme Value Theory: an Introduction (2006), New York: Springer, New York · Zbl 1101.62002
[11] de Winter, R.; Sterl, A.; Ruessink, B., Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs, J. Geophys. Res.: Atmos., 118, 4, 1601-1612 (2013)
[12] Dumat Al Jandal wind farm: https://dumataljandal.com7, Accessed: 20 May 2019 (2017)
[13] DuMouchel, WH, Estimating the stable index α in order to measure tail thickness: a critique, Ann. Stat., 11, 4, 1019-1031 (1983) · Zbl 0547.62022
[14] Emeis, S., How well does a power law fit to a diabatic boundary-layer wind profile?, DEWI Mag., 26, 59-62 (2005)
[15] Fisher, R A, Tippett, L H C: Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp 180-190. Cambridge University Press (1928) · JFM 54.0560.05
[16] Gaetan, C.; Grigoletto, M., A hierarchical model for the analysis of spatial rainfall extremes, J. Agric. Biol. Environ. Stat., 12, 4, 434-449 (2007) · Zbl 1306.62277
[17] Gelfand, AE; Vounatsou, P., Proper multivariate conditional autoregressive models for spatial data analysis, Biostatistics, 4, 1, 11-15 (2003) · Zbl 1142.62393
[18] Giani, P.; Tagle, F.; Genton, MG; Castruccio, S.; Crippa, P., Closing the gap between wind energy targets and implementation for emerging countries, Appl. Energy, 269, 115085 (2020)
[19] Gnedenko, B., Sur la distribution limite du terme maximum d’une série aléatoire, Ann. Math., 44, 423-453 (1943) · Zbl 0063.01643
[20] Heffernan, JE; Tawn, JA, A conditional approach for multivariate extreme values (with discussion), J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 66, 3, 497-546 (2004) · Zbl 1046.62051
[21] Hosking, J.; Wallis, JR, Regional Frequency Analysis: an Approach Based on L-Moments (1997), Cambridge: Cambridge University Press, Cambridge
[22] Huser, R.; Davison, A., Space-time modelling of extreme events, J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 76, 2, 439-461 (2014)
[23] Jalbert, J.; Favre, AC; Bélisle, C.; Angers, JF, A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America, J. R. Stat. Soc.: Ser. C (Appl. Stat.), 66, 5, 941-962 (2017)
[24] KA-CARE: King Abdullah City for Atomic and Renewable Energy: Building the Renewable Energy Sector in Saudi Arabia. Report (2012)
[25] Kavanagh, L.; Lee, D.; Pryce, G., Is poverty decentralizing? Quantifying uncertainty in the decentralization of urban poverty, Ann. Am. Assoc. Geogr., 106, 6, 1286-1298 (2016)
[26] Kharin, VV; Zwiers, FW, Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM, J. Clim., 13, 21, 3760-3788 (2000)
[27] Kriegel, HP, Pfeifle, M: Density-based clustering of uncertain data. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp 672-677. ACM (2005a)
[28] Kriegel, HP, Pfeifle, M: Hierarchical density-based clustering of uncertain data. IEEE (2005b)
[29] Kumar, D.; Mishra, V.; Ganguly, AR, Evaluating wind extremes in CMIP5 climate models, Clim. Dyn., 45, 1-2, 441-453 (2015)
[30] Ledford, AW; Tawn, JA, Statistics for near independence in multivariate extreme values, Biometrika, 83, 1, 169-187 (1996) · Zbl 0865.62040
[31] Ledford, AW; Tawn, JA, Modelling dependence within joint tail regions, J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 59, 2, 475-499 (1997) · Zbl 0886.62063
[32] Lee, D: CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors, vol. 55 (2013)
[33] Leroux, B.G., Lei, X., Breslow, N.: Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Statistical Models in Epidemiology, the Environment, and Clinical Trials, pp 179-191. Springer, Berlin (2000) · Zbl 0957.62095
[34] Mann, EM; Steinman, BA; Miller, SK, Absence of internal multidecadal and interdecadal oscillations in climate model simulations, Nat. Commun., 11, 49, 1-9 (2020)
[35] Martins, ES; Stedinger, JR, Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data, Water Resour. Res., 36, 3, 737-744 (2000)
[36] NEOM Project: https://www.neom.com/, Accessed: 28 Aug 2018 (2017)
[37] Nikulin, G.; Kjellströ, ME; Hansson, U.; Strandberg, G.; Ullerstig, A., Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations, Tellus A: Dyn. Meteorol. Oceanogr., 63, 1, 41-55 (2011)
[38] Pickands, J., Statistical inference using extreme order statistics, Ann. Stat., 3, 1, 119-131 (1975) · Zbl 0312.62038
[39] Pryor, S.; Barthelmie, R., Assessing climate change impacts on the near-term stability of the wind energy resource over the United States, Proc. Natl. Acad. Sci., 108, 20, 8167-8171 (2011)
[40] Ramos, A.; Ledford, A., A new class of models for bivariate joint tails, J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 71, 1, 219-241 (2009) · Zbl 1231.62093
[41] Rehman, S.; Ahmad, A., Assessment of wind energy potential for coastal locations of the Kingdom of Saudi Arabia, Energy, 29, 8, 1105-1115 (2004)
[42] Rehman, S.; El-Amin, I.; Ahmad, F.; Shaahid, S.; Al-Shehri, A.; Bakhashwain, J., Wind power resource assessment for Rafha, Saudi Arabia, Renew. Sustain. Energy Rev., 11, 5, 937-950 (2007)
[43] Reich, BJ; Shaby, BA, A spatial Markov model for climate extremes, J. Comput. Graphic. Stat., 28, 1, 117-126 (2019)
[44] Resnick, SI, Extreme Values, Regular Variation and Point Processes (1987), New York: Springer, New York · Zbl 0633.60001
[45] Rue, H.; Held, L., Gaussian Markov Random Fields: Theory and Applications (2005), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 1093.60003
[46] Sang, H.; Gelfand, AE, Hierarchical modeling for extreme values observed over space and time, Environ. Ecol. Stat., 16, 3, 407-426 (2009)
[47] Sang, H.; Gelfand, AE, Continuous spatial process models for spatial extreme values, J. Agric. Biol. Environ. Stat., 15, 1, 49-65 (2010) · Zbl 1306.62334
[48] Scarrott, C.; MacDonald, A., A review of extreme value threshold estimation and uncertainty quantification, REVSTAT-Stat. J., 10, 1, 33-60 (2012) · Zbl 1297.62120
[49] Shaahid, S.; Al-Hadhrami, LM; Rahman, M., Potential of establishment of wind farms in western province of Saudi Arabia, Energy Procedia, 52, 497-505 (2014)
[50] Smith, RL, Maximum likelihood estimation in a class of nonregular cases, Biometrika, 72, 1, 67-90 (1985) · Zbl 0583.62026
[51] Smith, RL, Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone, Stat. Sci., 4, 4, 367-377 (1989) · Zbl 0955.62646
[52] Tagle, F.; Castruccio, S.; Crippa, P.; Genton, MG, A non-Gaussian spatio-temporal model for daily wind speeds based on a multivariate skew-t distribution, J. Time Ser. Anal., 40, 312-326 (2019) · Zbl 1418.62400
[53] Telesca, L, Guignard, F, Laib, M, Kanevski, M: Analysis of temporal properties of wind extremes. arXiv:180808847 (2018)
[54] Tobler, WR, A computer movie simulating urban growth in the Detroit region, Econ. Geogr., 46, sup1, 234-240 (1970)
[55] Towe, RP; Tawn, JA; Lamb, R.; Sherlock, CG, Model-based inference of conditional extreme value distributions with hydrological applications, Environmetrics, 30, e2575 (2019)
[56] Turkman, KF; Turkman, MA; Pereira, J., Asymptotic models and inference for extremes of spatio-temporal data, Extremes, 13, 4, 375-397 (2010) · Zbl 1226.60083
[57] Vision 2030: http://vision2030.gov.sa/en/node/87, Accessed: 28 Aug 2018 (2016)
[58] Weiss, J.; Bernardara, P.; Benoit, M., Modeling intersite dependence for regional frequency analysis of extreme marine events, Water Resour. Res., 50, 7, 5926-5940 (2014)
[59] Winter, HC; Tawn, JA; Brown, SJ, Modelling the effect of the El Nino-Southern Oscillation on extreme spatial temperature events over Australia, Ann. Appl. Stat., 10, 4, 2075-2101 (2016) · Zbl 1454.62466
[60] Xie, L.; Gu, Y.; Zhu, X.; Genton, MG, Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch, IEEE Trans. Smart Grid, 5, 1, 511-520 (2014)
[61] Yip, C M A: Statistical Characteristics and Mapping of Near-Surface and Elevated Wind Resources in the Middle East. PhD thesis, King Abdullah University of Science and Technology (2018)
[62] Yip, CMA; Gunturu, UB; Stenchikov, GL, Wind resource characterization in the Arabian Peninsula, Appl. Energy, 164, 826-836 (2016)
[63] Zhu, X.; Genton, MG; Gu, Y.; Xie, L., Space-time wind speed forecasting for improved power system dispatch, TEST, 23, 1, 1-25 (2014) · Zbl 1297.62160
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.