zbMATH — the first resource for mathematics

Gain and loss of function mutations in biological chemical reaction networks: a mathematical model with application to colorectal cancer cells. (English) Zbl 1466.92062
Summary: This paper studies a system of ordinary differential equations modeling a chemical reaction network and derives from it a simulation tool mimicking loss of function and gain of function mutations found in cancer cells. More specifically, from a theoretical perspective, our approach focuses on the determination of moiety conservation laws for the system and their relation with the corresponding stoichiometric surfaces. Then we show that loss of function mutations can be implemented in the model via modification of the initial conditions in the system, while gain of function mutations can be implemented by eliminating specific reactions. Finally, the model is utilized to examine in detail the G1-S phase of a colorectal cancer cell.
92C42 Systems biology, networks
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C37 Cell biology
Full Text: DOI
[1] Anderson, MW; Moss, JJ; Szalai, R.; Lane, JD, Mathematical modeling highlights the complex role of AKT in TRAIL-induced apoptosis of colorectal carcinoma cells, iScience, 12, 182-193 (2019)
[2] Armaghany, T.; Wilson, JD; Chu, Q.; Mills, G., Genetic alterations in colorectal cancer, Gastrointest Cancer Res, 5, 1, 19 (2012)
[3] Bellam, N.; Pasche, B.; Pasche, B., TGF-\( \beta\) signaling alterations and colon cancer, Cancer genetics, 85-103 (2010), Boston: Springer, Boston
[4] Bertero, M.; Piana, M.; Quarteroni, A.; Formaggia, L.; Veneziani, A., Inverse problems in biomedical imaging: modeling and methods of solution, Complex systems in biomedicine, 1-33 (2006), Milano: Springer, Milano · Zbl 1387.92054
[5] Castagnino, N.; Maffei, M.; Tortolina, L.; Zoppoli, G.; Piras, D.; Nencioni, A.; Moran, E.; Ballestrero, A.; Patrone, F.; Parodi, S., Systems medicine in colorectal cancer: from a mathematical model toward a new type of clinical trial, WIREs Syst Biol Med, 8, 4, 314-336 (2016)
[6] Caviglia, G.; Morro, A.; Pinamonti, N., The Klein-Gordon equation in mixture models of tumour growth, Phys Lett A, 378, 48, 3607-3613 (2014) · Zbl 1301.92029
[7] Chellaboina, V.; Bhat, SP; Haddad, WM; Bernstein, DS, Modeling and analysis of mass-action kinetics, IEEE Control Syst Mag, 29, 4, 60-78 (2009) · Zbl 1395.93098
[8] Conradi, C.; Flockerzi, D., Multistationarity in mass action networks with applications to ERK activation, J Math Biol, 65, 1, 107-156 (2012) · Zbl 1278.37058
[9] Conradi, C.; Mincheva, M., Catalytic constants enable the emergence of bistability in dual phosphorylation, J R Soc Interface, 11, 95, 20140158 (2014)
[10] De Martino, A.; De Martino, D.; Mulet, R.; Pagnani, A., Identifying all moiety conservation laws in genome-scale metabolic networks, PLoS ONE, 9, 7, e100750 (2014)
[11] Domijan, M.; Kirkilionis, M., Graph theory and qualitative analysis of reaction networks, Net Heter Media, 3, 2, 295 (2008) · Zbl 1141.92021
[12] Eduati, F.; Doldàn-Martelli, V.; Klinger, B.; Cokelaer, T.; Sieber, A.; Kogera, F.; Dorel, M.; Garnett, MJ; Blüthgen, N.; Saez-Rodriguez, J., Drug resistance mechanisms in colorectal cancer dissected with cell type-specific dynamic logic models, Cancer Res, 77, 12, 3364-3375 (2017)
[13] Engl, HW; Flamm, C.; Kügler, P.; Lu, J.; Müller, S.; Schuster, P., Inverse problems in systems biology, Inverse Probl, 25, 12, 123014 (2009) · Zbl 1193.34001
[14] Érdi, P.; Tóth, J., Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models (1989), Manchester: Manchester University Press, Manchester · Zbl 0696.92027
[15] Facchetti, G.; Zampieri, M.; Altafini, C., Predicting and characterizing selective multiple drug treatments for metabolic diseases and cancer, BMC Syst Biol, 6, 1, 115 (2012)
[16] Feinberg, M., Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems, Chem Eng Sci, 42, 10, 2229-2268 (1987)
[17] Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks, Arch Rat Mech Anal, 132, 4, 311-370 (1995) · Zbl 0853.92024
[18] Griffiths, AJ; Wessler, SR; Lewontin, RC; Gelbart, WM; Suzuki, DT; Miller, JH, An introduction to genetic analysis (2005), New York: Macmillan, New York
[19] Haraldsdóttir, HS; Fleming, RM, Identification of conserved moieties in metabolic networks by graph theoretical analysis of atom transition networks, PLoS Comput Biol, 12, 11, e1004999 (2016)
[20] Hochman, G.; Halevi-Tobias, K.; Kogan, Y.; Agur, Z., Extracellular inhibitors can attenuate tumorigenic wnt pathway activity in adenomatous polyposis coli mutants: predictions of a validated mathematical model, PLoS ONE, 12, 7, e0179888 (2017)
[21] Ingalls, BP, Mathematical modeling in systems biology: an introduction (2013), Cambridge: MIT Press, Cambridge · Zbl 1312.92003
[22] Jones, GW; Chapman, SJ, Modeling growth in biological materials, Siam Rev, 54, 1, 52-118 (2012) · Zbl 1247.74042
[23] Jordan, JD; Landau, EM; Iyengar, R., Signaling networks: the origins of cellular multitasking, Cell, 103, 2, 193-200 (2000)
[24] Karin, M.; Smeal, T., Control of transcription factors by signal transduction pathways: the beginning of the end, Trends Biochem Sci, 17, 10, 418-422 (1992)
[25] Kohn, KW; Aladjem, MI; Weinstein, JN; Pommier, Y., Molecular interaction maps of bioregulatory networks: a general rubric for systems biology, Mol Biol Cell, 17, 1, 1-13 (2006)
[26] Kschischo, M., A gentle introduction to the thermodynamics of biochemical stoichiometric networks in steady state, Eur Phys J Spec Top, 187, 1, 255-274 (2010)
[27] Lemieux, E.; Cagnol, S.; Beaudry, K.; Carrier, J.; Rivard, N., Oncogenic KRAS signalling promotes the Wnt/\( \beta \)-catenin pathway through LRP6 in colorectal cancer, Oncogene, 34, 38, 4914-4927 (2015)
[28] Levine, AJ, Targeting therapies for the p53 protein in cancer treatments, Ann Rev Cancer Biol, 3, 21-34 (2019)
[29] Levine, AJ; Jenkins, NA; Copeland, NG, The roles of initiating truncal mutations in human cancers: the order of mutations and tumor cell type matters, Cancer Cell, 35, 1, 10-15 (2019)
[30] Li, Y.; Zhang, Y.; Li, X.; Yi, S.; Xu, J., Gain-of-function mutations: an emerging advantage for cancer biology, Trends Biochem Sci, 44, 659-674 (2019)
[31] Markert, EK; Vazquez, A., Mathematical models of cancer metabolism, Cancer Metab, 3, 1, 14 (2015)
[32] Morkel, M.; Riemer, P.; Bläker, H.; Sers, C., Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance, Oncotarget, 6, 25, 20785 (2015)
[33] Roy, M.; Finley, SD, Computational model predicts the effects of targeting cellular metabolism in pancreatic cancer, Front Physiol, 8, 217 (2017)
[34] Schilling, CH; Letscher, D.; Palsson, BØ, Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective, J Theor Biol, 203, 3, 229-248 (2000)
[35] Schuster, S.; Höfer, T., Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity, J Chem Soc Faraday Trans, 87, 16, 2561-2566 (1991)
[36] Sever, R.; Brugge, JS, Signal transduction in cancer, Cold Spring Harb Perspect Med, 5, 4, a006098 (2015)
[37] Shampine, LF; Reichelt, MW, The MATLAB ODE suite, SIAM J Sci Comput, 18, 1, 1-22 (1997) · Zbl 0868.65040
[38] Shinar, G.; Alon, U.; Feinberg, M., Sensitivity and robustness in chemical reaction networks, Siam J Appl Math, 69, 4, 977-998 (2009) · Zbl 1195.80023
[39] Stratton, MR; Campbell, PJ; Futreal, PA, The cancer genome, Nature, 458, 7239, 719-724 (2009)
[40] Torres, NB; Altafini, C., Drug combinatorics and side effect estimation on the signed human drug-target network, BMC Syst Biol, 10, 1, 74 (2016)
[41] Tortolina, L.; Duffy, DJ; Maffei, M.; Castagnino, N.; Carmody, AM; Kolch, W.; Kholodenko, BN; De Ambrosi, C.; Barla, A.; Biganzoli, EM, Advances in dynamic modeling of colorectal cancer signaling-network regions, a path toward targeted therapies, Oncotarget, 6, 7, 5041-5058 (2015)
[42] Tyson, JJ; Novak, B., Temporal organization of the cell cycle, Curr Biol, 18, 17, R759-R768 (2008)
[43] Weinstein, JN; Collisson, EA; Mills, GB; Shaw, KRM; Ozenberger, BA; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, JM; Network, CGAR, The cancer genome atlas pan-cancer analysis project, Nat Genet, 45, 10, 1113 (2013)
[44] Yang, G.; Yang, X., Smad4-mediated TGF-\( \beta\) signaling in tumorigenesis, Int J Biol Sci, 6, 1, 1 (2010)
[45] Yu, PY; Craciun, G., Mathematical analysis of chemical reaction systems, Isr J Chem, 58, 6-7, 733-741 (2018)
[46] Zhang, YE, Mechanistic insight into contextual TGF-\( \beta\) signaling, Curr Opin Cell Biol, 51, 1-7 (2018)
[47] Zhao, M.; Mishra, L.; Deng, CX, The role of TGF-\( \beta \)/SMAD4 signaling in cancer, Int J Biol Sci, 14, 2, 111 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.