×

zbMATH — the first resource for mathematics

Performance indicators in multiobjective optimization. (English) Zbl 07356075
Summary: In recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has been introduced to measure the quality of Pareto front approximations produced by these algorithms. In this work, we propose a review of a total of 63 performance indicators partitioned into four groups according to their properties: cardinality, convergence, distribution and spread. Applications of these indicators are presented as well.

MSC:
90Bxx Operations research and management science
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akhtar, T.; Shoemaker, C., Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection, Journal of Global Optimization, 64, 1, 17-32 (2016) · Zbl 1339.90293
[2] Al-Dujaili, A.; Suresh, S., BMOBench: Black-box multi-objective optimization benchmarking platform, Technical Report (2016), arXiv
[3] Al-Dujaili, A.; Suresh, S., Revisiting norm optimization for multi-objective black-box problems: A finite-time analysis, Journal of Global Optimization, 73, 3, 659-673 (2018) · Zbl 1420.90063
[4] Asafuddoula, M.; Ray, T.; Singh, H., Characterizing Pareto front approximations in many-objective optimization, Proceedings of the 2015 annual conference on genetic and evolutionary computation, 607-614 (2015), ACM: ACM New York, NY, USA
[5] Audet, C.; Savard, G.; Zghal, W., Multiobjective optimization through a series of single-objective formulations, SIAM Journal on Optimization, 19, 1, 188-210 (2008) · Zbl 1167.90020
[6] Audet, C.; Savard, G.; Zghal, W., A mesh adaptive direct search algorithm for multiobjective optimization, European Journal of Operational Research, 204, 3, 545-556 (2010) · Zbl 1181.90137
[7] Auger, A.; Bader, J.; Brockhoff, D., Theoretically investigating optimal \(\mu \)-distributions for the hypervolume indicator: First results for three objectives, (Schaefer, R.; Cotta, C.; Kołodziej, J.; Rudolph, G., Parallel problem solving from nature, PPSN XI (2010), Springer: Springer Berlin, Heidelberg), 586-596
[8] Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E., Theory of the hypervolume indicator: Optimal \(\mu \)-distributions and the choice of the reference point, Proceedings of the tenth ACM SIGEVO workshop on foundations of genetic algorithms, 87-102 (2009), ACM: ACM New York, NY, USA · Zbl 1369.68293
[9] Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E., Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications, Theoretical Computer Science, 425, 75-103 (2012) · Zbl 1242.90205
[10] Bäck, T., Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms (1996), Oxford University Press: Oxford University Press New York, NY, USA · Zbl 0877.68060
[11] Beiranvand, V.; Hare, W.; Lucet, Y., Best practices for comparing optimization algorithms, Optimization and Engineering, 18, 4, 815-848 (2017) · Zbl 1390.90601
[12] Beume, N.; Fonseca, C.; Lopez-Ibanez, M.; Paquete, L.; Vahrenhold, J., On the complexity of computing the hypervolume indicator, IEEE Transactions on Evolutionary Computation, 13, 5, 1075-1082 (2009)
[13] Beume, N.; Naujoks, B.; Emmerich, M., SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research, 181, 3, 1653-1669 (2007) · Zbl 1123.90064
[14] Bradford, E.; Schweidtmann, A.; Lapkin, A., Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm, Journal of Global Optimization, 71, 2, 407-438 (2018) · Zbl 1406.90095
[15] Branke, J.; Deb, K.; Miettinen, K.; Slowiński, R., Multiobjective optimization: Interactive and evolutionary approaches, 5252 (2008), Springer · Zbl 1147.68304
[16] Bringmann, K.; Friedrich, T., Approximating the volume of unions and intersections of high-dimensional geometric objects, Computational Geometry, 43, 6, 601-610 (2010) · Zbl 1206.65072
[17] Bringmann, K.; Friedrich, T., Tight bounds for the approximation ratio of the hypervolume indicator, (Schaefer, R.; Cotta, C.; Kołodziej, J.; Rudolph, G., Parallel problem solving from nature, PPSN XI (2010), Springer: Springer Berlin, Heidelberg), 607-616 · Zbl 1370.90238
[18] Bringmann, K.; Friedrich, T., Approximation quality of the hypervolume indicator, Artificial Intelligence, 195, 265-290 (2013) · Zbl 1270.68238
[19] Brockhoff, D.; Auger, A.; Hansen, N.; Tušar, T., Quantitative performance assessment of multiobjective optimizers: The average runtime attainment function, (Trautmann, H.; Rudolph, G.; Klamroth, K.; Schütze, O.; Wiecek, M.; Jin, Y.; Grimme, C., Evolutionary multi-criterion optimization (2017), Springer: Springer Cham), 103-119
[20] Brockhoff, D.; Wagner, T.; Trautmann, H., On the properties of the R2 indicator, Proceedings of the 14th annual conference on genetic and evolutionary computation, 465-472 (2012), ACM: ACM New York, NY, USA
[21] Brockhoff, D.; Wagner, T.; Trautmann, H., 2 indicator-based multiobjective search, Evolutionary Computation, 23, 3, 369-395 (2015)
[22] Cai, X.; Sun, H.; Fan, Z., A diversity indicator based on reference vectors for many-objective optimization, Information Sciences, 430-431, 467-486 (2018)
[23] Chan, T., Klee’s measure problem made easy, IEEE 54th annual symposium on foundations of computer science, 410-419 (2013), IEEE
[24] Cheng, S.; Shi, Y.; Qin, Q., On the performance metrics of multiobjective optimization, (Tan, Y.; Shi, Y.; Ji, Z., Advances in swarm intelligence (2012), Springer: Springer Berlin, Heidelberg), 504-512
[25] Coello, C.; Cortés, N., Solving multiobjective optimization problems using an artificial immune system, Genetic Programming and Evolvable Machines, 6, 2, 163-190 (2005)
[26] Collette, Y.; Siarry, P., Three new metrics to measure the convergence of metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions in biobjective optimization, Computers and Operations Research, 32, 4, 773-792 (2005) · Zbl 1071.90041
[27] Collette, Y.; Siarry, P., Multiobjective optimization: Principles and case studies (2011), Springer
[28] Cornuéjols, G.; Peña, J.; Tütüncü, R., Optimization methods in finance (2018), Cambridge University Press · Zbl 1400.91001
[29] Custódio, A.; Emmerich, M.; Madeira, J., Recent developments in derivative-free multiobjective optimization, Computational Technology Reviews, 5, 1, 1-30 (2012)
[30] Custódio, A.; Madeira, J.; Vaz, A.; Vicente, L., Direct multisearch for multiobjective optimization, SIAM Journal on Optimization, 21, 3, 1109-1140 (2011) · Zbl 1230.90167
[31] Czyzzak, P.; Jaszkiewicz, A., Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization, Journal of Multi-Criteria Decision Analysis, 7, 1, 34-47 (1998) · Zbl 0904.90146
[32] Dächert, K.; Klamroth, K.; Lacour, R.; Vanderpooten, D., Efficient computation of the search region in multi-objective optimization, European Journal of Operational Research, 260, 3, 841-855 (2017) · Zbl 1403.90602
[33] Das, I.; DennisJr., J., Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM Journal on Optimization, 8, 3, 631-657 (1998) · Zbl 0911.90287
[34] Deb, K., Multi-objective optimization using evolutionary algorithms (2001), John Wiley and Sons: John Wiley and Sons New York, NY, USA · Zbl 0970.90091
[35] Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T., A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, (Schoenauer, M.; Deb, K.; Rudolph, G.; Yao, X.; Lutton, E.; Merelo, J.; H. P. Schwefel, H.-P., Parallel problem solving from nature PPSN VI (2000), Springer: Springer Berlin, Heidelberg), 849-858
[36] Deb, K.; Tiwari, S., Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization, European Journal of Operational Research, 185, 3, 1062-1087 (2008) · Zbl 1146.90509
[37] Deutz, A.; Emmerich, M.; Yang, K., The expected R2-indicator improvement for multi-objective Bayesian optimization, (Deb, K.; Goodman, E.; Coello, C.; Klamroth, K.; Miettinen, K.; Mostaghim, S.; Reed, P., Evolutionary multi-criterion optimization (2019), Springer: Springer Cham), 359-370
[38] Dilettoso, E.; Rizzo, S.; Salerno, N., A weakly Pareto compliant quality indicator, Mathematical and Computational Applications, 22, 1 (2017)
[39] Dolan, E.; Moré, J., Benchmarking optimization software with performance profiles, Mathematical Programming, 91, 2, 201-213 (2002) · Zbl 1049.90004
[40] Ehrgott, M., Multicriteria optimization, volume 491 of lecture notes in economics and mathematical systems (2005), Springer: Springer Berlin
[41] Emmerich, M.; Deutz, A.; Kruisselbrink, J., On Quality Indicators for Black-Box Level Set Approximation, 157-185) (2013), Springer: Springer Berlin, Heidelberg · Zbl 1251.68201
[42] Emmerich, M.; Deutz, A.; Kruisselbrink, J.; Shukla, P., Cone-based hypervolume indicators: Construction, properties, and efficient computation, (Purshouse, R.; Fleming, P.; Fonseca, C.; Greco, S.; Shaw, J., Evolutionary multi-criterion optimization (2013), Springer: Springer Berlin, Heidelberg), 111-127
[43] Emmerich, M.; Deutz, A.; Yevseyeva, I., On Reference Point Free Weighted Hypervolume Indicators based on Desirability Functions and their Probabilistic Interpretation, Procedia Technology, 16, 532-541 (2014)
[44] Emmerich, M.; Yang, K.; Deutz, A.; Wang, H.; Fonseca, C., A Multicriteria Generalization of Bayesian Global Optimization, 229-242) (2016), Springer: Springer Cham · Zbl 1355.90071
[45] Falcón-Cardona, J.; Coello, C., Indicator-based multi-objective evolutionary algorithms: A comprehensive survey, ACM Computing Surveys, 53, 2, 1-35 (2020)
[46] Falcón-Cardona, J.; Coello, C.; Emmerich, M., CRI-EMOA: A Pareto-front shape invariant evolutionary multi-objective algorithm, (Deb, K.; Goodman, E.; Coello, C.; Klamroth, K.; Miettinen, K.; Mostaghim, S.; Reed, P., Evolutionary multi-criterion optimization (2019), Springer: Springer Cham), 307-318
[47] Falcón-Cardona, J.; Emmerich, M.; Coello, C., On the Construction of Pareto-Compliant Quality Indicators, Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2024-2027 (2019), ACM
[48] Farhang-Mehr, A.; Azarm, S., An information-theoretic entropy metric for assessing multi-objective optimization solution set quality, Journal of Mechanical Design, 125, 4, 655-663 (2004)
[49] Faulkenberg, S.; Wiecek, M., On the quality of discrete representations in multiple objective programming, Optimization and Engineering, 11, 3, 423-440 (2009) · Zbl 1273.90184
[50] Feliot, P.; Bect, J.; Vazquez, E., A Bayesian approach to constrained single-and multi-objective optimization, Journal of Global Optimization, 67, 1-2, 97-133 (2017) · Zbl 1390.90441
[51] Feliot, P.; Bect, J.; Vazquez, E., User preferences in Bayesian multi-objective optimization: The expected weighted hypervolume improvement criterion, (Nicosia, G.; Pardalos, P.; Giuffrida, G.; Umeton, R.; Sciacca, V., Machine learning, optimization, and data science (2019), Springer: Springer Cham), 533-544
[52] Fonseca, C.; da Fonseca, V.; Paquete, L., Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function, (Coello, C.; Aguirre, A. H.; Zitzler, E., Evolutionary multi-criterion optimization (2005), Springer: Springer Berlin, Heidelberg), 250-264 · Zbl 1109.68597
[53] Fonseca, C.; Guerreiro, A.; López-Ibáñez, M.; Paquete, L., On the computation of the empirical attainment function, (Takahashi, R.; Deb, K.; Wanner, E.; Greco, S., Evolutionary multi-criterion optimization (2011), Springer: Springer Berlin, Heidelberg), 106-120
[54] da Fonseca, V.; Fonseca, C.; Hall, A., Inferential performance assessment of stochastic optimisers and the attainment function, (Zitzler, E.; Thiele, L.; Deb, K. C.A. C.; Corne, D., Evolutionary multi-criterion optimization (2001), Springer: Springer Berlin, Heidelberg), 213-225
[55] Friedrich, T.; Bringmann, K.; Voß, T.; Igel, C., The logarithmic hypervolume indicator, Proceedings of the 11th workshop proceedings on foundations of genetic algorithms, 81-92 (2011), ACM: ACM New York, NY, USA · Zbl 1369.90157
[56] Ghosh, D.; Chakraborty, D., A direction based classical method to obtain complete Pareto set of multi-criteria optimization problems, Opsearch, 52, 2, 340-366 (2015) · Zbl 1332.90234
[57] Guerreiro, A.; Fonseca, C., Hypervolume sharpe-ratio indicator: Formalization and first theoretical results, Parallel problem solving from nature - PPSN XIV, 814-823 (2016)
[58] Guerreiro, A.; Fonseca, C., An analysis of the hypervolume sharpe-ratio indicator, European Journal of Operational Research, 283, 2, 614-629 (2020) · Zbl 1431.90141
[59] Hansen, M.; Jaszkiewicz, A., Evaluating the quality of approximations to the non-dominated set (1998), IMM, Department of Mathematical Modelling
[60] Hardin, D.; Saff, E., Discretizing manifolds via minimum energy points, Notices of the AMS, 51, 10, 1186-1194 (2004) · Zbl 1095.49031
[61] Hardin, D.; Saff, E., Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds, Advances in Mathematics, 193, 1, 174-204 (2005) · Zbl 1192.49048
[62] Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y., How to specify a reference point in hypervolume calculation for fair performance comparison, Evolutionary Computation, 26, 3, 411-440 (2018)
[63] Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y., Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems, IEEE symposium on computational intelligence in multi-criteria decision-making, 170-177 (2014)
[64] Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y., Modified distance calculation in generational distance and inverted generational distance, (Gaspar-Cunha, A.; Antunes, C. H.; Coello, C., Evolutionary multi-criterion optimization (2015), Springer: Springer Cham), 110-125
[65] Jaszkiewicz, A., Improved quick hypervolume algorithm, Computers and Operations Research, 90, 72-83 (2018) · Zbl 1391.90553
[66] Jiang, S.; Ong, Y.; Zhang, J.; Feng, L., Consistencies and contradictions of performance metrics in multiobjective optimization, IEEE Transactions on Cybernetics, 44, 12, 2391-2404 (2014)
[67] Jiang, S.; Yang, S.; Li, M., On the use of hypervolume for diversity measurement of Pareto front approximations, 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 1-8 (2016), IEEE
[68] Kidd, M.; Lusby, R.; Larsen, J., Equidistant representations: Connecting coverage and uniformity in discrete biobjective optimization, Computers and Operations Research, 117, 104872 (2020) · Zbl 1458.90576
[69] Knowles, J.; Corne, D., On metrics for comparing nondominated sets, Evolutionary computation, 1, 711-716 (2002), IEEE: IEEE Honolulu, HI
[70] Lacour, R.; Klamroth, K.; Fonseca, C., A box decomposition algorithm to compute the hyperVolume indicator, Computers and Operations Research, 79, 347-360 (2017) · Zbl 1391.90557
[71] Laumanns, M.; Günter, R.; Schwefel, H., Approximating the Pareto set: Concepts, diversity issues, and performance assessment (1999), Secretary of the SFB 531
[72] Piscataway, New Jersey, USA
[73] Leung, Y.; Wang, Y., U-measure: a quality measure for multiobjective programming, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 33, 3, 337-343 (2003)
[74] Li, M.; Yang, S.; Liu, X., Diversity comparison of Pareto front approximations in many-objective optimization, IEEE Transactions on Cybernetics, 44, 12, 2568-2584 (2014)
[75] Li, M.; Yang, S.; Liu, X., A performance comparison indicator for Pareto front approximations in many-objective optimization, Proceedings of the 2015 annual conference on genetic and evolutionary computation, 703-710 (2015), ACM: ACM New York, NY, USA
[76] Li, M.; Yao, X., Dominance move: A measure of comparing solution sets in multiobjective optimization, Technical Report (2017), arXiv
[77] Li, M.; Yao, X., Quality evaluation of solution sets in multiobjective optimisation: A survey, ACM Computing Surveys, 52, 2, 26:1-26:38 (2019)
[78] Li, M.; Zheng, J.; Xiao, G., Uniformity assessment for evolutionary multi-objective optimization, IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence), 625-632 (2008)
[79] Liuzzi, G.; Lucidi, S.; Rinaldi, F., A derivative-free approach to constrained multiobjective nonsmooth optimization, SIAM Journal on Optimization, 26, 4, 2744-2774 (2016) · Zbl 1358.90133
[80] Lizarraga-Lizarraga, G.; Hernandez-Aguirre, A.; Botello-Rionda, S., G-metric: An M-ary quality indicator for the evaluation of non-dominated sets, Proceedings of the 10th annual conference on genetic and evolutionary computation, 665-672 (2008), ACM: ACM New York, NY, USA
[81] Lopez, E.; Coello, C., IGD+-EMOA: A multi-objective evolutionary algorithm based on IGD+, 2016 IEEE Congress on Evolutionary Computation (CEC), 999-1006 (2016)
[82] Markowitz, H., Portfolio selection, Journal of Finance, 7, 1, 77-91 (1952)
[83] Martí, L.; García, J.; Berlanga, A.; Molina, J., A stopping criterion for multi-objective optimization evolutionary algorithms, Information Sciences, 367-368, 700-718 (2016) · Zbl 1428.90184
[84] Meng, H.; Zhang, X.; Liu, S., New quality measures for multiobjective programming, (Wang, L.; Chen, K.; Ong, Y., Advances in natural computation (2005), Springer: Springer Berlin, Heidelberg), 1044-1048
[85] Messac, A.; Mattson, C., Normal constraint method with guarantee of even representation of complete Pareto frontier, AIAA Journal, 42, 10, 2101-2111 (2004)
[86] Moré, J.; Wild, S., Benchmarking derivative-free optimization algorithms, SIAM Journal on Optimization, 20, 1, 172-191 (2009) · Zbl 1187.90319
[87] Mostaghim, S.; Teich, J., A new approach on many objective diversity measurement, (Branke, J.; Deb, K.; Miettinen, K.; Steuer, R., Practical approaches to multi-objective optimization. Practical approaches to multi-objective optimization, Dagstuhl Seminar Proceedings (2005), Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany: Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany Dagstuhl, Germany)
[88] Nesterov, Y.; Nemirovskii, A., Interior-point polynomial algorithms in convex programming (1994), Society for Industrial and Applied Mathematics · Zbl 0824.90112
[89] Nocedal, J.; Wright, S., Numerical optimization, Springer Series in Operations Research and Financial Engineering (2006), Springer: Springer Berlin · Zbl 1104.65059
[90] Canberra, Australia
[91] Riquelme, N.; Lücken, C. V.; Baran, B., Performance metrics in multi-objective optimization, Latin American computing conference, 1-11 (2015), IEEE
[92] Rudolph, G.; Schütze, O.; Grimme, C.; Domínguez-Medina, C.; Trautmann, H., Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results, Computational Optimization and Applications, 64, 2, 589-618 (2016) · Zbl 1369.90162
[93] Russo, L.; Francisco, A., Quick hypervolume, IEEE Transactions on Evolutionary Computation, 18, 4, 481-502 (2014)
[94] Russo, L.; Francisco, A., Extending quick hypervolume, Journal of Heuristics, 22, 3, 245-271 (2016)
[95] Sayın, S., Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming, Mathematical Programming, 87, 3, 543-560 (2000) · Zbl 0970.90090
[96] Schott, J., Fault tolerant design using single and multicriteria genetic algorithm optimization, Technical Report (1995), Air force Institute Of Tech Wright-Patterson AFB OH
[97] Schutze, O.; Esquivel, X.; Lara, A.; Coello, C., Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization, IEEE Transactions on Evolutionary Computation, 16, 4, 504-522 (2012)
[98] Shannon, C., A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review, 5, 1, 3-55 (2001)
[99] Shir, O.; Preuss, M.; Naujoks, B.; Emmerich, M., Enhancing decision space diversity in evolutionary multiobjective algorithms, (Ehrgott, M.; Fonseca, C.; Gandibleux, X.; Hao, J.-K.; Sevaux, M., Evolutionary multi-criterion optimization (2009), Springer: Springer Berlin, Heidelberg), 95-109
[100] Shukla, P.; Doll, N.; Schmeck, H., A theoretical analysis of volume based Pareto front approximations, Proceedings of the 2014 annual conference on genetic and evolutionary computation, 1415-1422 (2014), ACM: ACM New York, NY, USA
[101] Slowinski, R.; Teghem, J., Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (1990), Springer · Zbl 0724.00033
[102] Tan, K.; Lee, T.; Khor, E., Evolutionary algorithms for multi-objective optimization: performance assessments and comparisons, Artificial Intelligence Review, 17, 4, 251-290 (2002) · Zbl 1007.68144
[103] Tian, Y.; Zhang, X.; Cheng, R.; Jin, Y., A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, Proceedings of the 2016 IEEE congress on evolutionary computation (CEC’2016), 5222-5229 (2016), IEEE
[104] Trautmann, H.; Wagner, T.; Brockhoff, D., R2-EMOA: Focused multiobjective search using R2-indicator-based selection, (Nicosia, G.; Pardalos, P., Learning and intelligent optimization (2013), Springer: Springer Berlin, Heidelberg), 70-74
[105] Ulrich, T.; Bader, J.; Thiele, L., Defining and optimizing indicator-based diversity measures in multiobjective search, (Schaefer, R.; Cotta, C.; Kołodziej, J.; Rudolph, G., Parallel problem solving from nature, PPSN XI (2010), Springer: Springer Berlin, Heidelberg), 707-717
[106] Ulrich, T.; Bader, J.; Zitzler, E., Integrating decision space diversity into hypervolume-based multiobjective search, Proceedings of the 12th annual conference on genetic and evolutionary computation, 455-462 (2010), ACM: ACM New York, NY, USA
[107] Van Veldhuizen, D., Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations, Technical Report (1999), School of Engineering of the Air Force Institute of Technology, Dayton, Ohio
[108] Van Veldhuizen, D.; Lamont, G., On measuring multiobjective evolutionary algorithm performance, Proceedings of the 2000 congress on evolutionary computation, 1, 204-211 (2000)
[109] Vargas, A.; Bogoya, J., A generalization of the averaged Hausdorff distance, Computación y Sistemas, 22, 2, 331-345 (2018)
[110] Wagner, T.; Trautmann, H.; Brockhoff, D., Preference articulation by means of the R2 indicator, (Purshouse, R.; Fleming, J.; Fonseca, C.; Greco, S.; Shaw, J., Evolutionary multi-criterion optimization (2013), Springer: Springer Berlin, Heidelberg), 81-95
[111] Wagner, T.; Trautmann, H.; Martí, L., A taxonomy of online stopping criteria for multi-objective evolutionary algorithms, (Takahashi, R.; Deb, K.; Wanner, E.; Greco, S., Evolutionary multi-criterion optimization (2011), Springer: Springer Berlin, Heidelberg), 16-30
[112] Wagner, T.; Trautmann, H.; Naujoks, B., OCD: Online convergence detection for evolutionary multi-objective algorithms based on statistical testing, (Ehrgott, M.; Fonseca, C.; Gandibleux, X.; Hao, J.-K.; Sevaux, M., Evolutionary multi-criterion optimization (2009), Springer: Springer Berlin, Heidelberg), 198-215
[113] While, L.; Bradstreet, L.; Barone, L., A fast way of calculating exact hypervolumes, IEEE Transactions on Evolutionary Computation, 16, 1, 86-95 (2012)
[114] Wiecek, M.; Ehrgott, M.; Engau, A., Continuous multiobjective programming, Multiple criteria decision analysis, 739-815 (2016), Springer New York
[115] Wu, J.; Azarm, S., Metrics for quality assessment of a multiobjective design optimization solution set, Journal of Mechanical Design, 123, 1, 18-25 (2000)
[116] Yevseyeva, I.; Guerreiro, A.; Emmerich, M.; Fonseca, C., A portfolio optimization approach to selection in multiobjective evolutionary algorithms, Parallel problem solving from nature - PPSN XIII, 672-681 (2014)
[117] Zhao, J.; Jiao, L.; Liu, F.; Fernandes, V.; Yevseyeva, I.; Xia, S.; Emmerich, M., 3D fast convex-hull-based evolutionary multiobjective optimization algorithm, Applied Soft Computing, 67, 322-336 (2018)
[118] Zheng, K.; Yang, R.; Xu, H.; Hu, J., A new distribution metric for comparing Pareto optimal solutions, Structural and Multidisciplinary Optimization, 55, 1, 53-62 (2017)
[119] Zhou, A.; Jin, A.; Zhang, Q.; Sendhoff, B.; Tsang, E., Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, IEEE international conference on evolutionary computation, 892-899 (2006), IEEE
[120] Zitzler, E., Evolutionary algorithms for multiobjective optimization: Methods and applications (1999), Institute of Technology: Institute of Technology Zurich, Swiss Federal, Ph.D. thesis.
[121] Zitzler, E.; Brockhoff, D.; Thiele, L., The hypervolume indicator revisited: on the design of Pareto-compliant indicators via weighted integration, (Obayashi, S.; Deb, K.; Poloni, C.; Hiroyasu, T.; Murata, T., Evolutionary multi-criterion optimization (2007), Springer: Springer Berlin, Heidelberg), 862-876
[122] Zitzler, E.; Deb, K.; Thiele, L., Comparison of multiobjective evolutionary algorithms: Empirical results, Evolutionary Computation, 8, 2, 173-195 (2000)
[123] Zitzler, E.; Knowles, J.; Thiele, L., Quality assessment of Pareto set approximations, Multiobjective optimization, 373-404 (2008), Springer, Berlin, Heidelberg
[124] Zitzler, E.; Künzli, S., Indicator-based selection in multiobjective search, (Yao, X.; Burke, E.; Lozano, J.; Smith, J.; Merelo-Guervós, J.; Bullinaria, J.; Schwefel, H.-S., Parallel problem solving from nature - PPSN VIII (2004), Springer: Springer Berlin, Heidelberg), 832-842
[125] Zitzler, E.; Thiele, L., Multiobjective optimization using evolutionary algorithms - A comparative case study, (Eiben, A.; Bäck, T.; Schoenauer, M.; Schwefel, H., Parallel problem solving from nature - PPSN V (1998), Springer: Springer Berlin, Heidelberg), 292-301
[126] Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.; da Fonseca, V., Performance assessment of multiobjective optimizers: An analysis and review, IEEE Transactions on Evolutionary Computation, 7, 2, 117-132 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.