Unitarity in KK-graviton production, a case study in warped extra-dimensions. (English) Zbl 1462.83057

Summary: The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


83E15 Kaluza-Klein and other higher-dimensional theories
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C45 Quantization of the gravitational field
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text: DOI arXiv


[1] Kaluza, T., Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, 966 (1921) · JFM 48.1327.01
[2] Klein, O., Quantum Theory and Five-Dimensional Theory of Relativity (in German and English), Z. Phys., 37, 895 (1926) · JFM 52.0970.09
[3] Antoniadis, I., A Possible new dimension at a few TeV, Phys. Lett. B, 246, 377 (1990)
[4] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, GR, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B, 429, 263 (1998) · Zbl 1355.81103
[5] Appelquist, T.; Cheng, H-C; Dobrescu, BA, Bounds on universal extra dimensions, Phys. Rev. D, 64, 035002 (2001)
[6] Randall, L.; Sundrum, R., A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370 (1999) · Zbl 0946.81063
[7] Randall, L.; Sundrum, R., An Alternative to compactification, Phys. Rev. Lett., 83, 4690 (1999) · Zbl 0946.81074
[8] Hinterbichler, K., Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 (2012)
[9] Giudice, GF; Rattazzi, R.; Wells, JD, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B, 544, 3 (1999)
[10] Hooper, D.; Profumo, S., Dark Matter and Collider Phenomenology of Universal Extra Dimensions, Phys. Rept., 453, 29 (2007)
[11] Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J., LHC Signals from Warped Extra Dimensions, Phys. Rev. D, 77, 015003 (2008)
[12] Bonifacio, J.; Hinterbichler, K.; Rosen, RA, Constraints on a gravitational Higgs mechanism, Phys. Rev. D, 100, 084017 (2019)
[13] Sekhar Chivukula, R.; Foren, D.; Mohan, KA; Sengupta, D.; Simmons, EH, Sum Rules for Massive Spin-2 Kaluza-Klein Elastic Scattering Amplitudes, Phys. Rev. D, 100, 115033 (2019)
[14] Sekhar Chivukula, R.; Foren, D.; Mohan, KA; Sengupta, D.; Simmons, EH, Scattering amplitudes of massive spin-2 Kaluza-Klein states grow only as \(\mathcal{O}(s) \), Phys. Rev. D, 101, 055013 (2020)
[15] Chivukula, RS; Foren, D.; Mohan, KA; Sengupta, D.; Simmons, EH, Massive Spin-2 Scattering Amplitudes in Extra-Dimensional Theories, Phys. Rev. D, 101, 075013 (2020)
[16] Lee, HM; Park, M.; Sanz, V., Gravity-mediated (or Composite) Dark Matter, Eur. Phys. J. C, 74, 2715 (2014)
[17] Rueter, TD; Rizzo, TG; Hewett, JL, Gravity-Mediated Dark Matter Annihilation in the Randall-Sundrum Model, JHEP, 10, 094 (2017) · Zbl 1383.83141
[18] Folgado, MG; Donini, A.; Rius, N., Gravity-mediated Scalar Dark Matter in Warped Extra-Dimensions, JHEP, 01, 161 (2020)
[19] Carmona, A.; Castellano Ruiz, J.; Neubert, M., A warped scalar portal to fermionic dark matter, Eur. Phys. J. C, 81, 58 (2021)
[20] Arkani-Hamed, N.; Georgi, H.; Schwartz, MD, Effective field theory for massive gravitons and gravity in theory space, Annals Phys., 305, 96 (2003) · Zbl 1022.81035
[21] Schwartz, MD, Constructing gravitational dimensions, Phys. Rev. D, 68, 024029 (2003)
[22] de Rham, C.; Gabadadze, G., Generalization of the Fierz-Pauli Action, Phys. Rev. D, 82, 044020 (2010)
[23] de Rham, C.; Gabadadze, G.; Tolley, AJ, Resummation of Massive Gravity, Phys. Rev. Lett., 106, 231101 (2011)
[24] Gabadadze, G.; Older, D.; Pirtskhalava, D., Resolving the van Dam-Veltman-Zakharov and strong coupling problems in massive gravity and bigravity, Phys. Rev. D, 100, 124017 (2019)
[25] Lee, BW; Quigg, C.; Thacker, HB, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D, 16, 1519 (1977)
[26] Bonifacio, J.; Hinterbichler, K., Unitarization from Geometry, JHEP, 12, 165 (2019) · Zbl 1431.81157
[27] R. Rattazzi, Cargese lectures on extra-dimensions, in Cargese School of Particle Physics and Cosmology: the Interface, (2003) [hep-ph/0607055] [INSPIRE]. · Zbl 1135.83004
[28] G. D. Kribs, TASI 2004 lectures on the phenomenology of extra dimensions, in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics in D ≧ 4, (2006) [hep-ph/0605325] [INSPIRE].
[29] S. Raychaudhuri and K. Sridhar, Particle Physics of Brane Worlds and Extra Dimensions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, U.K. (2016) DOI.
[30] Callin, P.; Ravndal, F., Lagrangian formalism of gravity in the Randall-Sundrum model, Phys. Rev. D, 72, 064026 (2005)
[31] Csáki, C.; Graesser, ML; Kribs, GD, Radion dynamics and electroweak physics, Phys. Rev. D, 63, 065002 (2001)
[32] Fierz, M.; Pauli, W., On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A, 173, 211 (1939) · Zbl 0023.43004
[33] Davoudiasl, H.; Hewett, JL; Rizzo, TG, Phenomenology of the Randall-Sundrum Gauge Hierarchy Model, Phys. Rev. Lett., 84, 2080 (2000) · Zbl 0959.81123
[34] Gleisberg, T.; Krauss, F.; Matchev, KT; Schalicke, A.; Schumann, S.; Soff, G., Helicity formalism for spin-2 particles, JHEP, 09, 001 (2003)
[35] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth Dover printing, tenth gpo printing ed., Dover, New York, U.S.A. (1964). · Zbl 0171.38503
[36] Bessel Functions and Two-Dimensional Problems, https://math.libretexts.org/Bookshelves/Differential_Equations/Book
[37] I. N. Sneddon, On some infinite series involving the zeros of bessel functions of the first kind, Proceedings of the Glasgow Mathematical Association, 4 (1960) 144. · Zbl 0094.04301
[38] Goldberger, WD; Wise, MB, Modulus stabilization with bulk fields, Phys. Rev. Lett., 83, 4922 (1999)
[39] xAct: Efficient tensor computer algebra for the Wolfram Language, http://www.xact.es/.
[40] Brizuela, D.; Martín-García, JM; Mena Marugán, GA, xPert: Computer algebra for metric perturbation theory, Gen. Rel. Grav., 41, 2415 (2009) · Zbl 1176.83004
[41] Christensen, ND; Duhr, C., FeynRules — Feynman rules made easy, Comput. Phys. Commun., 180, 1614 (2009)
[42] Mertig, R.; Böhm, M.; Denner, A., FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun., 64, 345 (1991)
[43] V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun.207 (2016) 432 [arXiv:1601.01167] [INSPIRE]. · Zbl 1375.68227
[44] V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements, Comput. Phys. Commun.256 (2020) 107478 [arXiv:2001.04407] [INSPIRE]. · Zbl 1375.68227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.