Hydrochemical interactions of phoretic particles: a regularized multipole framework. (English) Zbl 1486.76108

Summary: Chemically active colloids modify the concentration of chemical solutes surrounding them in order to self-propel. In doing so, they generate long-ranged hydrodynamic flows and chemical gradients that modify the trajectories of other particles. As a result, the dynamics of reactive suspensions is fundamentally governed by hydro-chemical interactions. A full solution of the detailed hydro-chemical problem with many particles is challenging and computationally expensive. Most current methods rely on the Green’s functions of the Laplace and Stokes operators to approximate the particle signatures in the far field, an approach which is only valid in the very dilute limit in simple geometries. To overcome these limitations, we propose a regularized multipole framework, directly inspired by the force coupling method (FCM), to model phoretic suspensions. Our approach, called diffusio-phoretic FCM (DFCM), relies on grid-based volume averages of the concentration field to compute the particle surface concentration moments. These moments define the chemical multipoles of the diffusion (Laplace) problem and provide the swimming forcing of the Stokes equations. Unlike far-field models based on singularity superposition, DFCM accounts for mutually induced dipoles. The accuracy of the method is evaluated against exact and accurate numerical solutions for a few canonical cases. We also quantify its improvements over far-field approximations for a wide range of inter-particle distances. The resulting framework can readily be implemented into efficient solvers, allowing for large scale simulations of semi-dilute diffusio-phoretic suspensions.


76V05 Reaction effects in flows
76Z10 Biopropulsion in water and in air
76T20 Suspensions
76R50 Diffusion


PyStokes; STKFMM
Full Text: DOI arXiv


[1] Alarcón, F. & Pagonabarraga, I.2013Spontaneous aggregation and global polar ordering in squirmer suspensions. J. Mol. Liq.185, 56-61.
[2] Anderson, J.L.1989Colloid transport by interfacial forces. Annu. Rev. Fluid Mech.21 (1), 61-99.
[3] Babataheri, A., Roper, M., Fermigier, M. & Du Roure, O.2011Tethered flexibmags as artificial cilia. J. Fluid Mech.678, 5-13. · Zbl 1241.76474
[4] Batchelor, G.K.1970The stress system in a suspension of force-free particles. J. Fluid Mech.41, 545-570. · Zbl 0193.25702
[5] Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G.2016Active particles in complex and crowded environments. Rev. Mod. Phys.88, 045006.
[6] Bhalla, A.P.S., Griffith, B.E., Patankar, N.A. & Donev, A.2013A minimally-resolved immersed boundary model for reaction-diffusion problems. J. Chem. Phys.139 (21), 214112.
[7] Blake, J.R.1971A spherical envelope approach to ciliary propulsion. J. Fluid Mech.46 (1), 199-208. · Zbl 0224.76031
[8] Brady, J.F. & Bossis, G.1988Stokesian dynamics. Annu. Rev. Fluid Mech.20 (1), 111-157.
[9] Bregulla, A.P. & Cichos, F.2015Size dependent efficiency of photophoretic swimmers. Faraday Discuss.184, 381-391.
[10] Brennen, C. & Winet, H.1977Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech.9, 339-398. · Zbl 0431.76100
[11] Brown, A. & Poon, W.2014Ionic effects in self-propelled pt-coated janus swimmers. Soft Matt.10, 4016-4027.
[12] Buttinoni, I., Volpe, G., Kümmel, F., Volpe, G. & Bechinger, C.2012Active Brownian motion tunable by light. J. Phys.: Condens. Matter24, 284129.
[13] Cates, M.E. & Tailleur, J.2015Motility-induced phase separation. Annu. Rev. Conden. Ma. P.6, 219-244.
[14] Colberg, P.H. & Kapral, R.2017Many-body dynamics of chemically propelled nanomotors. J. Chem. Phys.147 (6), 064910.
[15] Córdova-Figueroa, U.M. & Brady, J.F.2008Osmotic propulsion: the osmotic motor. Phys. Rev. Lett.100, 158303.
[16] Dance, S.L. & Maxey, M.R.2003Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comput. Phys.189 (1), 212-238. · Zbl 1097.76600
[17] Delmotte, B., Keaveny, E.E., Plouraboué, F. & Climent, E.2015Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method. J. Comput. Phys.302, 524-547. · Zbl 1349.76859
[18] Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A. & Bibette, J.2005Microscopic artificial swimmers. Nature473, 862-865. · Zbl 1132.76062
[19] Duan, W., Wang, W., Das, S., Yadav, V., Mallouk, T.E. & Sen, A.2015Synthetic nano- and micro-machines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem.8, 311-333.
[20] Ebbens, S.J. & Howse, J.R.2010In pursuit of propulsion at the nanoscale. Soft Matt.6, 726-738.
[21] Elgeti, J., Winkler, R.G. & Gompper, G.2015Physics of microswimmers-single particle motion and collective behavior: a review. Rep. Prog. Phys.78 (5), 056601.
[22] Fauci, L. & Dillon, R.2006Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech.38, 371-394. · Zbl 1100.76071
[23] Fiore, A.M. & Swan, J.W.2019Fast Stokesian dynamics. J. Fluid Mech.878, 544-597. · Zbl 1430.76397
[24] Ginot, F., Theurkauff, I., Detcheverry, F., Ybert, C. & Cottin-Bizonne, C.2018Aggregation-fragmentation and individual dynamics of active clusters. Nat. Commun.9, 696.
[25] Golestanian, R., Liverpool, T.B. & Ajdari, A.2007Designing phoretic micro- and nano-swimmers. New J. Phys.9 (5), 126-126.
[26] Guasto, J.S., Rusconi, R. & Stocker, R.2012Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech.44, 373-400. · Zbl 1358.76086
[27] Howse, J.R., Jones, R.A.L., Ryan, A.J., Gough, T., Vafabakhsh, R. & Golestanian, R.2007Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett.99, 048102.
[28] Hu, W.-F., Lin, T.-S., Rafai, S. & Misbah, C.2019Chaotic swimming of phoretic particles. Phys. Rev. Lett.123 (23), 238004.
[29] Ibrahim, Y., Golestanian, R. & Liverpool, T.B.2017Multiple phoretic mechanisms in the self-propulsion of a pt-insulator janus swimmer. J. Fluid Mech.828, 318-352. · Zbl 1460.76972
[30] Ibrahim, Y. & Liverpool, T.B.2016How walls affect the dynamics of self-phoretic microswimmers. Eur. Phys. J.225, 1843-1874.
[31] Ishikawa, T., Simmonds, M.P. & Pedley, T.J.2006Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech.568, 119-160. · Zbl 1177.76477
[32] Izri, Z., Van Der Linden, M.N., Michelin, S. & Dauchot, O.2014Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion. Phys. Rev. Lett.113, 248302.
[33] Kagan, D., Laocharoensuk, R., Zimmerman, M., Clawson, C., Balasubramanian, S., Kang, D., Bishop, D., Sattayasamitsathit, S., Zhang, L. & Wang, J.2010Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small6 (23), 2741-2747.
[34] Kanso, E. & Michelin, S.2019Phoretic and hydrodynamic interactions of weakly confined autophoretic particles. J. Chem. Phys.150, 044902.
[35] Keaveny, E.E. & Maxey, M.R.2008Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids. J. Comput. Phys.227, 9554-9571. · Zbl 1161.76059
[36] Kümmel, F., Ten Hagen, B., Wittkowski, R., Buttinoni, I., Eichhorn, R., Volpe, G., Löwen, H. & Bechinger, C.2013Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett.110, 198302.
[37] Ladd, A.J.C. & Verberg, R.2001Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys.104 (5), 1191-1251. · Zbl 1046.76037
[38] Lambert, R.A., Picano, F., Breugem, W.P. & Brandt, L.2013Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech.733, 528-557. · Zbl 1294.76298
[39] Lauga, E.2016Bacterial hydrodynamics. Annu. Rev. Fluid Mech.48, 105-130.
[40] Lauga, E. & Michelin, S.2016Stresslets induced by active swimmers. Phys. Rev. Lett.117, 148001. · Zbl 1460.76956
[41] Lauga, E. & Powers, T.R.2009The hydrodynamics of swimming microorganisms. Rep. Prog. Phys.72 (9), 096601.
[42] Li, J., Shklyaev, O.E., Li, T., Liu, W., Shum, H., Rozen, I., Balazs, A.C. & Wang, J.2015Self-propelled nanomotors autonomously seek and repair cracks. Nano Lett.15 (10), 7077-7085.
[43] Liang, Z., Gimbutas, Z., Greengard, L., Huang, J. & Jiang, S.2013A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications. J. Comput. Phys.234, 133-139. · Zbl 1284.76318
[44] Liebchen, B. & Löwen, H.2019Which interactions dominate in active colloids?J. Chem. Phys.150, 061102.
[45] Liebchen, B., Marenduzzo, D., Pagonabarraga, I. & Cates, M.E.2015Clustering and pattern formation in chemicorepulsive active colloids. Phys. Rev. Lett.115, 258301.
[46] Liu, D., Keaveny, E.E., Maxey, M.R. & Karniadakis, G.E.2009Force-coupling method for flows with ellipsoidal particles. J. Comput. Phys.228 (10), 3559-3581. · Zbl 1396.76068
[47] Lomholt, S. & Maxey, M.R.2003Force-coupling method for particulate two-phase flow: Stokes flow. J. Comput. Phys.184 (2), 381-405. · Zbl 1047.76100
[48] Lushi, E. & Peskin, C.S.2013Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers. Comput. Struct.122, 239-248.
[49] Maass, C.C., Krüger, C., Herminghaus, S. & Bahr, C.2016Swimming droplets. Annu. Rev. Conden. Ma. P.7, 171-193.
[50] Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M. & Simha, R.A.2013Hydrodynamics of soft active matter. Rev. Mod. Phys.85, 1143-1189.
[51] Maxey, M. & Patel, B.K.2001Localized force representations for particles sedimenting in stokes flow. Intl J. Multiphase Flow27, 1603-1626. · Zbl 1137.76676
[52] Michelin, S., Guérin, E. & Lauga, E.2019Collective dissolution of microbubbles. Phys. Rev. Fluids3, 043601.
[53] Michelin, S. & Lauga, E.2014Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech.747, 572-604. · Zbl 1317.76104
[54] Michelin, S. & Lauga, E.2015Autophoretic locomotion from geometric asymmetry. Eur. Phys. J. E38, 7.
[55] Michelin, S., Lauga, E. & Bartolo, D.2013Spontaneous autophoretic motion of isotropic particles. Phys. Fluids25 (6), 061701.
[56] Montenegro-Johnson, T.D., Michelin, S. & Lauga, E.2015A regularised singularity approach to phoretic problems. Eur. Phys. J. E38 (12), 139.
[57] Moran, J.L. & Posner, J.D.2011Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J. Fluid Mech.680, 31-66. · Zbl 1241.76440
[58] Moran, J.L. & Posner, J.D.2017Phoretic self-propulsion. Annu. Rev. Fluid Mech.49, 511-540. · Zbl 1359.76339
[59] Nasouri, B. & Golestanian, R.2020aExact axisymmetric interaction of phoretically active janus particles. J. Fluid Mech.905, A13. · Zbl 1460.76851
[60] Nasouri, B. & Golestanian, R.2020bExact phoretic interaction of two chemically active particles. Phys. Rev. Lett.124, 168003. · Zbl 1460.76851
[61] Pak, O.S. & Lauga, E.2014Generalized squirming motion of a sphere. J. Engng Maths88, 1-28. · Zbl 1359.76362
[62] Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., Angelo, S.K.S., Cao, Y., Mallouk, T.E., Lammert, P.E. & Crespi, V.H.2004Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc.126 (41), 13424-1343.
[63] Pedley, T.J. & Kessler, J.O.1992Hydrodynamics phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech.24, 313-358. · Zbl 0825.76985
[64] Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E. & Duguet, E.2005Design and synthesis of janus micro- and nanoparticles. J. Mater. Chem.15, 3745-3760.
[65] Popescu, M.N., Uspal, W.E. & Dietrich, S.2016Self-diffusiophoresis of chemically active colloids. Eur. Phys. J.225, 2189-2206.
[66] Reigh, S.Y. & Kapral, R.2015Catalytic dimer nanomotors: continuum theory and microscopic dynamics. Soft Matt.11, 3149-3158.
[67] Saffman, P.G.1973On the settling speed of free and fixed suspensions. Stud. Appl. Maths52 (2), 115-127. · Zbl 0264.76077
[68] Saha, S., Golestanian, R. & Ramaswamy, S.2014Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E89, 062316.
[69] Saintillan, D.2018Rheology of active fluids. Annu. Rev. Fluid Mech.50, 563-592. · Zbl 1384.76057
[70] Saintillan, D. & Shelley, M.J.2013Active suspensions and their nonlinear models. C. R. Phys.14 (6), 497-517.
[71] Schmidt, F., Liebchen, B., Löwen, H. & Volpe, G.2019Light-controlled assembly of active colloidal molecules. J. Chem. Phys.150 (9), 094905.
[72] Shao, J., Abdelghani, M., Shen, G., Cao, S., Williams, D.S. & Van Hest, J.C.M.2018Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano12 (5), 4877-4885.
[73] Sharifi-Mood, N., Mozzafari, A. & Córdova-Figueroa, U.M.2016Pair interaction of catalytically active colloids: from assembly to escape. J. Fluid Mech.798, 910-954. · Zbl 1422.76191
[74] Shklyaev, S., Brady, J.F. & Córdova-Figueroa, U.M.2014Non-spherical osmotic motor: chemical sailing. J. Fluid Mech.748, 488-520. · Zbl 1416.76340
[75] Sierou, A. & Brady, J.F.2001Accelerated Stokesian dynamics simulations. J. Fluid Mech.448, 115-146. · Zbl 1045.76034
[76] Singh, R. & Adhikari, R.2019 Pystokes: Phoresis and Stokesian hydrodynamics in python. arXiv:1910.00909.
[77] Singh, R., Adhikari, R. & Cates, M.E.2019Competing chemical and hydrodynamic interactions in autophoretic colloidal suspensions. J. Chem. Phys.151 (4), 044901.
[78] Soto, R. & Golestanian, R.2014Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett.112, 068301.
[79] Soto, R. & Golestanian, R.2015Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E91, 052304.
[80] Stone, H.A. & Samuel, A.D.T.1996Propulsion of microorganisms by surface distortions. Phys. Rev. Lett.77, 4102.
[81] Sundararajan, S., Lammert, P.E., Zudans, A.W., Crespi, V.H. & Sen, A.2008Catalytic motors for transport of colloidal cargo. Nano Lett.8 (5), 1271-1276.
[82] Swan, J.W., Brady, J.F. & Moore, R.S.2011Modeling hydrodynamic self-propulsion with Stokesian dynamics. Or teaching Stokesian dynamics to swim. Phys. Fluids23 (7), 071901.
[83] Tatulea-Codrean, M. & Lauga, E.2018Artificial chemotaxis of phoretic swimmers: instantaneous and long-time behaviour. J. Fluid Mech.856, 921-957. · Zbl 1415.76804
[84] Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L.2012Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett.108, 268303.
[85] Thutupalli, S., Geyer, D., Singh, R., Adhikari, R. & Stone, H.A.2018Flow-induced phase separation of active particles is controlled by boundary conditions. Proc. Natl Acad. Sci. USA115, 5403-5408.
[86] Traverso, T. & Michelin, S.2020Hydrochemical interactions in dilute phoretic suspensions: from individual particle properties to collective organization. Phys. Rev. Fluids5, 104203.
[87] Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M.2015Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matt.11, 434-438.
[88] Varma, A. & Michelin, S.2019Modeling chemo-hydrodynamic interactions of phoretic particles: a unified framework. Phys. Rev. Fluids4, 124204.
[89] Varma, A., Montenegro-Johnson, T.D. & Michelin, S.2018Clustering-induced self-propulsion of isotropic autophoretic particles. Soft Matt.14, 7155-7173.
[90] Wang, Y., Hernandez, R.M. Jr., Bartlett, D.J., Bingham, J.M., Kline, T.R., Sen, A. & Mallouk, T.E.2006Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogene peroxide solutions. Langmuir22, 10451-10456.
[91] Xu, J., Maxey, M.R. & Karniadakis, G.E.M.2002Numerical simulation of turbulent drag reduction using micro-bubbles. J. Fluid Mech.468, 271-281. · Zbl 1035.76052
[92] Yadav, V., Duan, W., Butler, P.J. & Sen, A.2015Anatomy of nanoscale propulsion. Annu. Rev. Biophys.44, 77-100.
[93] Yan, W. & Blackwell, R.2020 Kernel aggregated fast multipole method: efficient summation of Laplace and Stokes kernel functions. arXiv:2010.15155.
[94] Yan, W. & Brady, J.F.2016The behavior of active diffusiophoretic suspensions: an accelerated Laplacian dynamics study. J. Chem. Phys.145 (13), 134902.
[95] Yang, M., Wysocki, A. & Ripoll, M.2014Hydrodynamic simulations of self-phoretic microswimmers. Soft Matt.10, 6208-6218.
[96] Yariv, E.2011Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proc. R. Soc. Lond. A467, 1645-1664. · Zbl 1228.82004
[97] Yeo, K. & Maxey, M.R.2010Simulations of concentrated suspensions using the force-coupling method. J. Comput. Phys.229, 2401-2421. · Zbl 1303.76012
[98] Yi, Y., Sanchez, L., Gao, Y. & Yu, Y.2016Janus particles for biological imaging and sensing. Analyst141 (12), 3526-3539.
[99] Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D. & Nelson, B.J.2009Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett.94, 064107.
[100] Zöttl, A. & Stark, H.2014Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett.112, 118101.
[101] Zöttl, A. & Stark, H.2016Emergent behavior in active colloids. J. Phys.: Condens. Matter28 (25), 253001.
[102] Zöttl, A. & Stark, H.2018Simulating squirmers with multiparticle collision dynamics. Eur. Phys. J. E41 (5), 61.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.