Nakamura, S. Distortion analyticity for two-body Schrödinger operators. (English) Zbl 0736.35026 Ann. Inst. Henri Poincaré, Phys. Théor. 53, No. 2, 149-157 (1990). A complex distortion which is local in momentum is studied for a Schrödinger operator \(-\Delta+V\). A class of distortion analytic \(V\)’s is given which includes analytic potentials and exponentially decaying potentials.The method enables to study semiclassical resonances for \(-\hbar^ 2\Delta+V\), \(V\) exponentially decaying [see the author, Commun. Partial Differ. Equations 14, 1385-1419 (1989; Zbl 0699.35204)]. Reviewer: J.Asch (Berlin) Cited in 6 Documents MSC: 35J10 Schrödinger operator, Schrödinger equation 35Q40 PDEs in connection with quantum mechanics Keywords:complex distortion; Schrödinger operator; exponentially decaying potentials; semiclassical resonances Citations:Zbl 0699.35204 PDF BibTeX XML Cite \textit{S. Nakamura}, Ann. Inst. Henri Poincaré, Phys. Théor. 53, No. 2, 149--157 (1990; Zbl 0736.35026) Full Text: Numdam EuDML OpenURL References: [1] F. Aguilar and J.M. Combes , On a Class of Analytic Perturbations of One-Body Schrödinger Operators , Commun. Math. Phys. , 1971 , Vol. 22 , pp. 269 - 279 . Article | MR 345551 | Zbl 0219.47011 · Zbl 0219.47011 [2] D. Babbit and E. Balslev , Local Distortion Techniques and Unitarity of the S-Matrix for 2-Body Problem , J. Funct. Anal. , 1975 , Vol. 18 , pp. 1 - 14 . MR 413860 [3] E. Balslev , Analyticity Properties of Eigenfunctions and Scattering Matrix , Commun. Math. Phys. , 1988 , Vol. 114 , pp. 599 - 612 . Article | MR 929132 | Zbl 0662.35079 · Zbl 0662.35079 [4] E. Balslev and J.M. Combes , Spectral Properties of Many-Body Schrödinger Operators with Dilation-Analytic Interactions , Commun. Math. Phys. , 1971 , Vol. 22 , pp. 280 - 299 . Article | MR 345552 | Zbl 0219.47005 · Zbl 0219.47005 [5] E. Balslev and E. Skibsted , Resonance Theory for Two-Body Schrödinger Operators (to appear). Numdam | MR 1033614 · Zbl 0714.35063 [6] J.M. Combes , P. Duclos , M. Klein and R. Seiler , The Shape Resonance , Commun. Math. Phys. , 1987 , Vol. 110 , pp. 215 - 236 . Article | MR 887996 | Zbl 0629.47044 · Zbl 0629.47044 [7] H.L. Cycon , Resonances Defined by Modified Dilations , Helv. Phys. Acta , 1989 , Vol. 58 , pp. 969 - 987 . MR 821113 [8] H.L. Cycon , R.G. Froese , W. Kirsch and B. Simon , Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry , Berlin , Springer-Verlag , 1987 . MR 883643 | Zbl 0619.47005 · Zbl 0619.47005 [9] B. Helffer and J. Sjöstrand , Resonances en limite semi-classique , Suppl. Bull. Soc. Math. France , 1986 , Vol. 114 . Numdam | Zbl 0631.35075 · Zbl 0631.35075 [10] W. Hunziker , Distortion Analyticity and Molecular Resonance Curves , Ann. Inst. Henri Poincaré , 1986 , Vol. 45 , pp. 339 - 358 . Numdam | MR 880742 | Zbl 0619.46068 · Zbl 0619.46068 [11] K. Jorgens , Linear Integral Operators , London , Pitman , 1982 . MR 647629 | Zbl 0499.47029 · Zbl 0499.47029 [12] S. Nakamura , Shape Resonances for Distortion Analytic Schrödinger Operators, Commun. P.D.E. , Vol. 14 , 1989 , pp. 1385 - 1419 . MR 1022991 | Zbl 0699.35204 · Zbl 0699.35204 [13] M. Reed and B. Simon , Methods of Modern Mathematical Physics , Vols. I - IV , New York , Academic Press , 1972 - 1979 . MR 493419 · Zbl 0242.46001 [14] I.M. Sigal , Complex Transformation Method and Resonances in One-Body Quantum Systems , Ann. Inst. Henri Poincaré , 1984 , Vol. 41 , pp. 103 - 114 . Numdam | MR 760129 | Zbl 0568.47008 · Zbl 0568.47008 [15] B. Simon , The Definition of Molecular Resonance Curves by the Method of Exterior Complex Scalong , Phys. Lett. , 1979 , Vol. 71A , pp. 211 - 214 . [16] M. Taylor , Pseudodifferential Operators , New Jersey , Princeton Univ. Press , 1981 . Zbl 0453.47026 · Zbl 0453.47026 [17] P. Hislop and I.M. Sigal , Shape Resonances in Quantum Mechanics, Differential Equation and Mathematical Physics , I. KNOWLES and Y. SAITO Eds., Lect. Notes Math. , 1987 , Vol. 1285 . MR 921268 | Zbl 0653.46074 · Zbl 0653.46074 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.