State space reconstruction in the presence of noise. (English) Zbl 0736.62075

Takens’ theorem demonstrates that in the absence of noise a multidimensional state space can be reconstructed from a scalar time series. This theorem gives little guidance, however, about practical considerations for reconstructing a good state space. We extend Takens’ treatment, applying statistical methods to incorporate the effects of observational noise and estimation error. We define the distortion matrix, which is proportional to the conditional covariance of a state, given a series of noisy measurements, and the noise amplification, which is proportional to root-mean-square time series prediction errors with an ideal model. We derive explicit formulae for these quantities, and we prove that in the low noise limit minimizing the distortion is equivalent to minimizing the noise amplification.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
93E99 Stochastic systems and control
62M99 Inference from stochastic processes
93E10 Estimation and detection in stochastic control theory
Full Text: DOI


[1] Abarbanel, H. D.I.; Brown, R.; Kadtke, J. B., Prediction and system identification in chaotic nonlinear systems: Time series with broadband spectra, Phys. Lett. A, 18, 401-408 (1989)
[2] Z. Aleksić, Estimating the embedding dimension, Physica D, to appear.; Z. Aleksić, Estimating the embedding dimension, Physica D, to appear.
[3] Badii, R.; Broggi, G.; Derighetti, B.; Ravani, M.; Ciliberto, S.; Politi, A.; Rubio, M. A., Dimension increase in filtered chaotic signals, Phys. Rev. Lett., 60, 979 (1988)
[4] Breeden, J. L.; Hübler, A., Reconstructing equations of motion from experimental data with unobserved variables, Phys. Rev. A, 42, 5817-5826 (1990)
[5] Broomhead, D. S.; Indik, R.; Newell, A. C.; Rand, D. A., Local adaptive Galerkin bases for large dimensional dynamical systems, Nonlinearity (1991), to appear · Zbl 0729.58034
[6] Broomhead, D. S.; Jones, R.; King, G. P., Topological dimension and local coordinates from time series data, J. Phys. A, 20, L563-L569 (1987) · Zbl 0644.58030
[7] Broomhead, D. S.; King, G. P., Extracting qualitative dynamics from experimental data, Physica D, 20, 217 (1987) · Zbl 0603.58040
[8] Casdagli, M., Nonlinear prediction of chaotic time series, Physica D, 35, 335-356 (1989) · Zbl 0671.62099
[9] Čenys, A.; Pyragas, K., Estimation of the number of degrees of freedom from chaotic time series, Phys. Lett. A, 129, 227 (1988)
[10] Cremers, J.; Hübler, A., Construction of differential equations from experimental data, Z. Naturforsch., 42a, 797-802 (1987)
[11] Crutchfield, J. P.; McNamara, B. S., Equations of motion from a data series, Complex Systems, 1, 417-452 (1987) · Zbl 0675.58026
[12] Farmer, J. D., Chaotic attractors of an infinite-dimensional dynamical system, Physica D, 4, 366-393 (1982) · Zbl 1194.37052
[13] Farmer, J. D.; Ott, E.; Yorke, J. A., The dimension of chaotic attractors, Physica D, 7, 153-180 (1983)
[14] Farmer, J. D.; Sidorowich, J. J., Predicting chaotic time series, Phys. Rev. Lett., 59, 845-848 (1987)
[15] Farmer, J. D.; Sidorowich, J. J., Exploiting chaos to predict the future and reduce noise, (Lee, Y. C., Evolution, Learing and Cognition (1988), World Scientific: World Scientific Singapore)
[16] Farmer, J. D.; Sidorowich, J. J., Optimal shadowing and noise reduction, Physica D, 47, 373 (1991) · Zbl 0729.65501
[17] Fraser, A. M., Information and entropy in strange attractors, IEEE Transactions on Information Theory, IT-35 (1989) · Zbl 0712.58038
[18] Fraser, A. M., Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria, Physica D, 34, 391-404 (1989) · Zbl 0709.94626
[19] Fraser, A. M.; Swinney, H. L., Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134-1140 (1986) · Zbl 1184.37027
[20] Froehling, H.; Crutchfield, J. P.; Farmer, J. P.; Packard, N. H.; Shaw, R. S., On determining the dimension of chaotic flows, Physica D, 3, 605 (1981) · Zbl 1194.37053
[21] J. Geweke, Inference and forecasting for chaotic nonlinear time series, in preparation.; J. Geweke, Inference and forecasting for chaotic nonlinear time series, in preparation.
[22] Gibson, J. F.; Casdagli, M.; Eubank, S.; Farmer, J. D., Principal component analysis and derivatives of time series, (Technical report LA-UR-90-2117 (1990), Los Alamos National Lab)
[23] Grassberger, P., Information content and predictability of lumped and distributed dynamical systems, (Technical Report WU-B-87-8 (1987), University of Wuppertal)
[24] Guckenheimer, J., Noise in chaotic systems, Nature, 298, 358-361 (1982)
[25] Kostelich, E. J.; Yorke, J. A., Noise reduction in dynamical systems, Phys. Rev. A, 38, 3 (1988)
[26] Hunter, N. F., Pleistocene climate as a dynamic system, (Casdagli, M.; Eubank, S., Nonlinear Prediction and Modeling (1991), Addison-Wesley: Addison-Wesley Reading, MA)
[27] Kaplan, J. L.; Yorke, J. A., Chaotic behavior of multidimensional difference equations, (Peitgen, H.-O.; Walther, H.-O., Functional Differential Equations and Approximations of Fixed Points. Functional Differential Equations and Approximations of Fixed Points, Springer Lecture Notes in Mathematics, Vol. 730 (1979), Springer: Springer Berlin), 204
[28] Lapedes, A. S.; Farber, R., Nonlinear signal processing using neural networks: Prediction and system modeling, (Technical Report LA-UR-87-2662 (1987), Los Alamos National Laboratory)
[29] Larimore, W., System identification, reduced order filtering, and modeling via canonical analysis, (Proc. 1983 American Control Conf. (1983))
[30] Liebert, W.; Pawelzik, K.; Schuster, H. G., Optimal embedding of chaotic attractors from topological considerations (1989)
[31] Liebert, W.; Schuster, H. G., Proper choice of the time delay for the analysis of chaotic time series, Phys. Lett. A, 142, 107-111 (1988)
[32] Mess, A. I., (Voncent, T.; Jennings, L. S.; Mees, A. I., Dynamics of Complex Interconnected Biological Systems (1990), Birkhauser: Birkhauser Boston), 104-124
[33] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Geometry from a time series, Phys. Rev. Lett., 45, 712-716 (1980)
[34] Priestley, M. B., State dependent models: A general approach to nonlinear time series analysis, J. Time Series Anal., 1, 47-71 (1980) · Zbl 0496.62076
[35] Priestley, M. B., Spectral Analysis of Time Series (1981), Academic Press: Academic Press New York · Zbl 0537.62075
[36] Sauer, T.; Yorke, J.; Casdagli, M.; Kostelich, E., Embedology (1990), University of Maryland, Technical report · Zbl 0943.37506
[37] Savit, R.; Green, M., Time series and independent variables, Physica D, 50, 95-116 (1991) · Zbl 0728.62089
[38] Shaw, R. S., Strange attractors, chaotic behavior, and information flow, Z. Naturforsch., 36a, 80-112 (1981) · Zbl 0599.58033
[39] Shaw, R. S., The Dripping Faucet as a Model Dynamical System (1984), Aerial Press: Aerial Press Santa Cruz
[40] Silverman, B. W., Kernel Density Estimation Techniques for Statistics and Data Analysis (1986), Chapman Hall: Chapman Hall London · Zbl 0617.62042
[41] Takens, F., Detecting strange attractors in fluid turbulence, (Rand, D.; Young, L.-S., Dynamical Systems and Turbulence (1981), Springer: Springer Berlin) · Zbl 0513.58032
[42] Tong, H.; Lim, K. S., Threshold autoregression, limit cycles and cyclical data, J. R. Stat. Soc. B, 42, 3, 245-292 (1980) · Zbl 0473.62081
[43] Townshend, B., Nonlinear prediction of speech signals, (Casdagli, M.; Eubank, S., Nonlinear Prediction and Modeling (1991), Addison-Wesley: Addison-Wesley Reading, MA), to appear
[44] Yule, G. U., Phil. Trans. R. Soc. London A, 226, 267 (1927)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.