zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
State space reconstruction in the presence of noise. (English) Zbl 0736.62075
Takens’ theorem demonstrates that in the absence of noise a multidimensional state space can be reconstructed from a scalar time series. This theorem gives little guidance, however, about practical considerations for reconstructing a good state space. We extend Takens’ treatment, applying statistical methods to incorporate the effects of observational noise and estimation error. We define the distortion matrix, which is proportional to the conditional covariance of a state, given a series of noisy measurements, and the noise amplification, which is proportional to root-mean-square time series prediction errors with an ideal model. We derive explicit formulae for these quantities, and we prove that in the low noise limit minimizing the distortion is equivalent to minimizing the noise amplification.

MSC:
62M10Time series, auto-correlation, regression, etc. (statistics)
93E99Stochastic systems and stochastic control
62M99Inference from stochastic processes
93E10Estimation and detection in stochastic control
WorldCat.org
Full Text: DOI
References:
[1] Abarbanel, H. D. I.; Brown, R.; Kadtke, J. B.: Prediction and system identification in chaotic nonlinear systems: time series with broadband spectra. Phys. lett. A 18, 401-408 (1989)
[2] Z. Aleksić, Estimating the embedding dimension, Physica D, to appear.
[3] Badii, R.; Broggi, G.; Derighetti, B.; Ravani, M.; Ciliberto, S.; Politi, A.; Rubio, M. A.: Dimension increase in filtered chaotic signals. Phys. rev. Lett. 60, 979 (1988)
[4] Breeden, J. L.; Hübler, A.: Reconstructing equations of motion from experimental data with unobserved variables. Phys. rev. A 42, 5817-5826 (1990)
[5] Broomhead, D. S.; Indik, R.; Newell, A. C.; Rand, D. A.: Local adaptive Galerkin bases for large dimensional dynamical systems. Nonlinearity (1991) · Zbl 0729.58034
[6] Broomhead, D. S.; Jones, R.; King, G. P.: Topological dimension and local coordinates from time series data. J. phys. A 20, L563-L569 (1987) · Zbl 0644.58030
[7] Broomhead, D. S.; King, G. P.: Extracting qualitative dynamics from experimental data. Physica D 20, 217 (1987) · Zbl 0603.58040
[8] Casdagli, M.: Nonlinear prediction of chaotic time series. Physica D 35, 335-356 (1989) · Zbl 0671.62099
[9] Čenys, A.; Pyragas, K.: Estimation of the number of degrees of freedom from chaotic time series. Phys. lett. A 129, 227 (1988)
[10] Cremers, J.; Hübler, A.: Construction of differential equations from experimental data. Z. naturforsch. 42a, 797-802 (1987)
[11] Crutchfield, J. P.; Mcnamara, B. S.: Equations of motion from a data series. Complex systems 1, 417-452 (1987) · Zbl 0675.58026
[12] Farmer, J. D.: Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4, 366-393 (1982) · Zbl 1194.37052
[13] Farmer, J. D.; Ott, E.; Yorke, J. A.: The dimension of chaotic attractors. Physica D 7, 153-180 (1983) · Zbl 0561.58032
[14] Farmer, J. D.; Sidorowich, J. J.: Predicting chaotic time series. Phys. rev. Lett. 59, 845-848 (1987)
[15] Farmer, J. D.; Sidorowich, J. J.: Exploiting chaos to predict the future and reduce noise. Evolution, learing and cognition (1988)
[16] Farmer, J. D.; Sidorowich, J. J.: Optimal shadowing and noise reduction. Physica D 47, 373 (1991) · Zbl 0729.65501
[17] Fraser, A. M.: Information and entropy in strange attractors. IEEE transactions on information theory 35 (1989) · Zbl 0712.58038
[18] Fraser, A. M.: Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria. Physica D 34, 391-404 (1989) · Zbl 0709.94626
[19] Fraser, A. M.; Swinney, H. L.: Independent coordinates for strange attractors from mutual information. Phys. rev. A 33, 1134-1140 (1986) · Zbl 1184.37027
[20] Froehling, H.; Crutchfield, J. P.; Farmer, J. P.; Packard, N. H.; Shaw, R. S.: On determining the dimension of chaotic flows. Physica D 3, 605 (1981) · Zbl 1194.37053
[21] J. Geweke, Inference and forecasting for chaotic nonlinear time series, in preparation.
[22] Gibson, J. F.; Casdagli, M.; Eubank, S.; Farmer, J. D.: Principal component analysis and derivatives of time series. Technical report LA-UR-90-2117 (1990)
[23] Grassberger, P.: Information content and predictability of lumped and distributed dynamical systems. Technical report Wu-B-87-8 (1987)
[24] Guckenheimer, J.: Noise in chaotic systems. Nature 298, 358-361 (1982)
[25] Kostelich, E. J.; Yorke, J. A.: Noise reduction in dynamical systems. Phys. rev. A 38, No. 3 (1988)
[26] Hunter, N. F.: Pleistocene climate as a dynamic system. Nonlinear prediction and modeling (1991)
[27] Kaplan, J. L.; Yorke, J. A.: Chaotic behavior of multidimensional difference equations. Springer lecture notes in mathematics 730, 204 (1979) · Zbl 0448.58020
[28] Lapedes, A. S.; Farber, R.: Nonlinear signal processing using neural networks: prediction and system modeling. Technical report LA-UR-87-2662 (1987)
[29] Larimore, W.: System identification, reduced order filtering, and modeling via canonical analysis. Proc. 1983 American control conf. (1983) · Zbl 0502.62004
[30] Liebert, W.; Pawelzik, K.; Schuster, H. G.: Optimal embedding of chaotic attractors from topological considerations. (1989)
[31] Liebert, W.; Schuster, H. G.: Proper choice of the time delay for the analysis of chaotic time series. Phys. lett. A 142, 107-111 (1988)
[32] Mess, A. I.: T.voncentl.s.jenningsa.i.meesdynamics of complex interconnected biological systems. Dynamics of complex interconnected biological systems, 104-124 (1990)
[33] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S.: Geometry from a time series. Phys. rev. Lett. 45, 712-716 (1980)
[34] Priestley, M. B.: State dependent models: A general approach to nonlinear time series analysis. J. time series anal. 1, 47-71 (1980) · Zbl 0496.62076
[35] Priestley, M. B.: Spectral analysis of time series. (1981) · Zbl 0537.62075
[36] Sauer, T.; Yorke, J.; Casdagli, M.; Kostelich, E.: Embedology. (1990) · Zbl 0943.37506
[37] Savit, R.; Green, M.: Time series and independent variables. Physica D 50, 95-116 (1991) · Zbl 0728.62089
[38] Shaw, R. S.: Strange attractors, chaotic behavior, and information flow. Z. naturforsch. 36a, 80-112 (1981) · Zbl 0599.58033
[39] Shaw, R. S.: The dripping faucet as a model dynamical system. (1984)
[40] Silverman, B. W.: Kernel density estimation techniques for statistics and data analysis. (1986) · Zbl 0617.62042
[41] Takens, F.: Detecting strange attractors in fluid turbulence. Dynamical systems and turbulence (1981) · Zbl 0513.58032
[42] Tong, H.; Lim, K. S.: Threshold autoregression, limit cycles and cyclical data. J. R. Stat. soc. B 42, No. 3, 245-292 (1980) · Zbl 0473.62081
[43] Townshend, B.: Nonlinear prediction of speech signals. Nonlinear prediction and modeling (1991)
[44] Yule, G. U.: Phil. trans. R. soc. London A. 226, 267 (1927)