A multigrid method for Reissner-Mindlin plates. (English) Zbl 0736.73071

Summary: The numerical solution of the Mindlin-Reissner plate equations by a multigrid method is studied. Difficulties arise only if the thickness parameter is significantly smaller than the mesh parameter. In this case an augmented Lagrangian method is applied to transform the given problem into a sequence of problems with relaxed penalty parameter. With this a parameter independent iteration is obtained.


74S30 Other numerical methods in solid mechanics (MSC2010)
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI EuDML


[1] Arnold, D.N. (1981): Discretization by finite elements of a model parameter dependent problem. Numer. Math.37, 405-421 · Zbl 0446.73066
[2] Arnold, D.N., Falk, R.S. (1989): A uniformly accurate finite element method for the Mindlin-Reissner plate. SIAM J. Numer. Anal.26, 1276-1290 · Zbl 0696.73040
[3] Arnold, D.N., Falk, R.S.: The boundary layer for the Reissner-Mindlin plate model. Submitted · Zbl 0698.73042
[4] Bank, R., Dupont, T. (1981): An optimal order process for solving finite element equations. Math. Comp.36, 35-51 · Zbl 0466.65059
[5] Bathe, K.J., Brezzi, F., Cho, S.W. (1989): The MITC7 and MITC9 plate bending elements. J. Computers & Structures32, 797-814 · Zbl 0705.73241
[6] Bathe, K.J., Dvorkin, E.N. (1985): A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Num. Meth. Eng.21, 367-383 · Zbl 0551.73072
[7] Blum, H., Rannacher, R. (1980): On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci.2, 556-581 · Zbl 0445.35023
[8] Braess, D., Bl?mer, C. (1990): A multigrid method for a parameter dependent problem in solid mechanics. Numer. Math.57, 747-761 · Zbl 0665.65077
[9] Brezzi, F., Bathe, K.J., Fortin, M. (1989): Mixed-interpolated elements of Reissner-Mindlin plates. Int. J. Num. Meth. Eng.28, 1787-1801 · Zbl 0705.73238
[10] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. In preparation · Zbl 0788.73002
[11] Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North Holland, Amsterdam · Zbl 0383.65058
[12] Fortin, M., Glowinski, R. (1983): Augmented Lagrangian Methods. North Holland, Amsterdam · Zbl 0525.65045
[13] Girault, V., Raviart, P.A. (1986): Finite Element Methods for Navier-Stokes Equations. Springer, Berlin Heidelberg New York · Zbl 0585.65077
[14] Hackbusch, W. (1985): Multi-Grid Methods and Applications. Springer, Berlin Heidelberg New York · Zbl 0595.65106
[15] Huang, Z. (1990): A multi-grid algorithm for mixed problems with penalty. Numer. Math.57, 227-247 · Zbl 0712.73106
[16] Hughes, T.J.R., Franca, L.P. (1988): A mixed finite element method for Reissner-Mindlin plate theory: uniform convergence of all higher order spaces. Comput. Meths. Appl. Mech. Engrg.67, 223-240 · Zbl 0611.73077
[17] Lions, J.L., Magenes, E. (1972): Non-Homogeneous Boundary Value Problems and Applications I. Springer, Berlin Heidelberg New York · Zbl 0223.35039
[18] Peisker, P., Braess, D. (0000): Uniform convergence of mixed interpolated elements for Reissner-Mindlin platesM 2 AN. (submitted) · Zbl 0758.73050
[19] Peisker, P., Braess, D. (1987): A conjugate gradient method and a multigrid algorithm for Morley’s finite approximation of the biharmonic equation. Numer. Math.50, 567-586 · Zbl 0595.65113
[20] Pitk?ranta, J. (1988): Analysis of some low-order finite element schemes for Reissner-Mindlin and Kirchhoff plates. Numer. Math.53, 237-254 · Zbl 0654.73043
[21] Raviart, P.A., Thomas, J.M. (1977): A mixed finite element method for second order elliptic problems. In: I. Galligani, E. Magenes, eds., Mathematical Aspects of Finite Element Methods, Springer, pp. 292-315 · Zbl 0362.65089
[22] Stenberg, R. (1990): Private communication, GAMM-conference
[23] Brezzi, F., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Submitted · Zbl 0751.73053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.