##
**Evolutionary de Rham-Hodge method.**
*(English)*
Zbl 1466.58003

Summary: The de Rham-Hodge theory is a landmark of the \(20^{\text{th}}\) Century’s mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric and topological analysis of evolving manifolds constructed from a filtration, which induces a family of evolutionary de Rham complexes. While the present method can be easily applied to close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold boundaries, which require appropriate analysis and treatment of boundary conditions on differential forms to maintain proper topological properties. Three sets of unique evolutionary Hodge Laplacians are proposed to generate three sets of topology-preserving singular spectra, for which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of dimensions 0, 1 and 2. Additionally, three sets of non-zero eigenvalues further reveal both topological persistence and geometric progression during the manifold evolution. Extensive numerical experiments are carried out via the discrete exterior calculus to demonstrate the potential of the proposed paradigm for data representation and shape analysis of both point cloud data and density maps. To demonstrate the utility of the proposed method, the application is considered to the protein B-factor predictions of a few challenging cases for which existing biophysical models break down.

### MSC:

58A12 | de Rham theory in global analysis |

58A14 | Hodge theory in global analysis |

53Z10 | Applications of differential geometry to biology |

53Z50 | Applications of differential geometry to data and computer science |

14F40 | de Rham cohomology and algebraic geometry |

### Keywords:

topological persistence; geometric progression; evolutionary spectra; multiscale differential geometry; multiscale data representation; shape analysis; discrete exterior calculus and manifold evolution
PDF
BibTeX
XML
Cite

\textit{J. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 7, 3785--3821 (2021; Zbl 1466.58003)

### References:

[1] | M. Akram; V. Michel, Regularisation of the Helmholtz decomposition and its application to geomagnetic field modelling, GEM-International Journal on Geomathematics, 1, 101-120 (2010) · Zbl 1204.41011 |

[2] | D. N. Arnold; R. S. Falk; R. Winther, Finite element exterior calculus, homological techniques and applications, Acta Numerica, 15, 1-155 (2006) · Zbl 1185.65204 |

[3] | A. R. Atilgan; S. Durell; R. L. Jernigan; M. C. Demirel; O. Keskin; I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal, 80, 505-515 (2001) |

[4] | I. Bahar; A. R. Atilgan; B. Erman, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding and Design, 2, 173-181 (1997) |

[5] | P. W. Bates; G.-W. Wei; S. Zhao, Minimal molecular surfaces and their applications, Journal of Computational Chemistry, 29, 380-391 (2007) |

[6] | P. Bendich; H. Edelsbrunner; M. Kerber, Computing robustness and persistence for images, IEEE Transactions on Visualization and Computer Graphics, 16, 1251-1260 (2010) |

[7] | D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and rigidity analysis, The Journal of Chemical Physics, 148 (2018), 054103. |

[8] | Z. Cang, L. Mu and G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening, PLOS Computational Biology, 14 (2018), e1005929. |

[9] | Z. Cang, L. Mu, K. Wu, K. Opron, K. Xia and G.-W. Wei, A topological approach for protein classification, Computational and Mathematical Biophysics, 1 (2015). · Zbl 1347.92054 |

[10] | Z. Cang, E. Munch and G.-W. Wei, Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis, Journal of Applied and Computational Topology, (2020), 1-27. · Zbl 1460.55007 |

[11] | Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLOS Computational Biology, 13 (2017), 1005690. |

[12] | Z. Cang and G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction, International Journal for Numerical Methods in Biomedical Engineering, 34 (2018), e2914. |

[13] | G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247-256. · Zbl 1380.68385 |

[14] | G. Carlsson; T. Ishkhanov; V. De Silva; A. Zomorodian, On the local behavior of spaces of natural images, International Journal of Computer Vision, 76, 1-12 (2008) |

[15] | T. Cecil, A numerical method for computing minimal surfaces in arbitrary dimension, Journal of Computational Physics, 206, 650-660 (2005) · Zbl 1070.65048 |

[16] | Z. Chen; N. A. Baker; G.-W. Wei, Differential geometry based solvation model Ⅱ: Lagrangian formulation, Journal of Mathematical Biology, 63, 1139-1200 (2011) · Zbl 1284.92025 |

[17] | S. Chowdhury and F. Mémoli, Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadephia, PA, 2018, 1152-1169. · Zbl 1403.68154 |

[18] | V. De Silva, R. Ghrist and A. Muhammad, Blind swarms for coverage in 2-D, Robotics: Science and Systems, 2005, 335-342. |

[19] | M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling, in Discrete Differential Geometry, Birkhäuser, Basel, 2008, 287-324. · Zbl 1152.58001 |

[20] | B. Di Fabio; C. Landi, A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions, Foundations of Computational Mathematics, 11, 499-527 (2011) · Zbl 1231.55004 |

[21] | Q. Du; C. Liu; X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198, 450-468 (2004) · Zbl 1116.74384 |

[22] | H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010. · Zbl 1193.55001 |

[23] | N. Foster; D. Metaxas, Realistic animation of liquids, Graphical Models and Image Processing, 58, 471-483 (1996) |

[24] | K. O. Friedrichs, Differential forms on Riemannian manifolds, Communications on Pure and Applied Mathematics, 8, 551-590 (1955) · Zbl 0066.07504 |

[25] | P. Frosini; C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9, 596-603 (1999) |

[26] | P. Frosini and C. Landi, Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, in Computer Analysis of Images and Patterns, Springer, Heidelberg, 2011, 294-301. |

[27] | M. Gameiro; Y. Hiraoka; S. Izumi; M. Kramar; K. Mischaikow; V. Nanda, A topological measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics, 32, 1-17 (2015) · Zbl 1320.55004 |

[28] | H. Gao, M. K. Mandal, G. Guo and J. Wan, Singular point detection using discrete Hodge Helmholtz decomposition in fingerprint images, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, 1094-1097. |

[29] | J. Gomes and O. Faugeras, Using the vector distance functions to evolve manifolds of arbitrary codimension, International Conference on Scale-Space Theories in Computer Vision, Springer, 2001, 1-13. · Zbl 0991.68099 |

[30] | T. Hazra; S. A. Ullah; S. Wang; E. Alexov; S. Zhao, A super-Gaussian Poisson-Boltzmann model for electrostatic free energy calculation: Smooth dielectric distribution for protein cavities and in both water and vacuum states, Journal of Mathematical Biology, 79, 631-672 (2019) · Zbl 1418.92042 |

[31] | W. Humphrey; A. Dalke; K. Schulten, VMD: visual molecular dynamics, Journal of Molecular Graphics, 14, 33-38 (1996) |

[32] | D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, (2009), no. 3, P03034, 24 pp. · Zbl 1459.55004 |

[33] | M. Kac, Can one hear the shape of a drum?, The American Mathematical Monthly, 73, 1-23 (1966) · Zbl 0139.05603 |

[34] | T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Volume 157, Springer-Verlag, New York, NY, 2004. · Zbl 1039.55001 |

[35] | V. Kovacev-Nikolic; P. Bubenik; D. Nikolić; G. Heo, Using persistent homology and dynamical distances to analyze protein binding, Statistical Applications in Genetics and Molecular Biology, 15, 19-38 (2016) · Zbl 1343.92380 |

[36] | H. Lee; H. Kang; M. K. Chung; B.-N. Kim; D. S. Lee, Persistent brain network homology from the perspective of dendrogram, IEEE Transactions on Medical Imaging, 31, 2267-2277 (2012) |

[37] | A. Leis; B. Rockel; L. Andrees; W. Baumeister, Visualizing cells at the nanoscale, Trends in Biochemical Sciences, 34, 60-70 (2009) |

[38] | N. N. Mansour, A. Kosovichev, D. Georgobiani, A. Wray and M. Miesch, Turbulence convection and oscillations in the sun, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559, 2004, 164 pp. |

[39] | Z. Meng, D. V. Anand, Y. Lu, J. Wu and K. Xia, Weighted persistent homology for biomolecular data analysis, Scientific reports, 10 2020, 1-15. |

[40] | K. Mikula; D. Sevcovic, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Mathematical Methods in the Applied Sciences, 27, 1545-1565 (2004) · Zbl 1049.35019 |

[41] | K. Mischaikow, M. Mrozek, J. Reiss and A. Szymczak, Construction of symbolic dynamics from experimental time series, Physical Review Letters, 82 (1999), 1144. |

[42] | Y. Mochizuki and A. Imiya, Spatial reasoning for robot navigation using the Helmholtz-Hodge decomposition of omnidirectional optical flow, 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand, 2009, 1-6. |

[43] | D. D. Nguyen and G.-W. Wei, AGL-score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening, Journal of Chemical Information and Modeling, 59 2019, 3291-3304. |

[44] | D. D. Nguyen; Z. Cang; K. Wu; M. Wang; Y. Cao; G.-W. Wei, Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, Journal of Computer-Aided Molecular Design, 33, 71-82 (2019) |

[45] | D. D. Nguyen; K. Gao; M. Wang; G.-W. Wei, MathDL: Mathematical deep learning for D3R Grand Challenge 4, Journal of Computer-Aided Molecular Design, 34, 1-17 (2019) |

[46] | D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-based geometric learning of molecular datasets, International Journal for Numerical Methods in Biomedical Engineering, 35 (2019), e3179. |

[47] | D. D. Nguyen, K. Xia and G.-W. Wei, Generalized flexibility-rigidity index, The Journal of Chemical Physics, 144 (2016), 234106. |

[48] | S. Nickell; C. Kofler; A. P. Leis; W. Baumeister, A visual approach to proteomics, Nature Reviews Molecular Cell Biology, 7, 225-230 (2006) |

[49] | P. Niyogi; S. Smale; S. Weinberger, A topological view of unsupervised learning from noisy data, SIAM Journal on Computing, 40, 646-663 (2011) · Zbl 1230.62085 |

[50] | K. Opron, K. Xia and G.-W. Wei, Communication: Capturing protein multiscale thermal fluctuations, Journal of Chemical Physics, 142 (2015), 211101. |

[51] | S. Osher; J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79, 12-49 (1988) · Zbl 0659.65132 |

[52] | J. Peschek; N. Braun; T. M. Franzmann; Y. Georgalis; M. Haslbeck; S. Weinkauf; J. Buchner, The eye lens chaperone \(\begin{document} \alpha \end{document} \)-crystallin forms defined globular assemblies, Proceedings of the National Academy of Sciences, 106, 13272-13277 (2009) |

[53] | D. Pachauri; C. Hinrichs; M. K. Chung; S. C. Johnson; V. Singh, Topology-based kernels with application to inference problems in Alzheimer’s disease, IEEE Transactions on Medical Imaging, 30, 1760-1770 (2011) |

[54] | D. B. Ray; I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics, 7, 145-210 (1971) · Zbl 0239.58014 |

[55] | C. V. Robinson; A. Sali; W. Baumeister, The molecular sociology of the cell, Nature, 450, 973-982 (2007) |

[56] | V. Robins, Towards computing homology from finite approximations, Topology Proceedings, Volume 24, Brookville, NY, 1999, 503-532. · Zbl 1026.55009 |

[57] | C. Shonkwiler, Poincaré duality angles for riemannian manifolds with boundary, Ph.D. thesis, University of Pennsylvania, 2009, arXiv: 0909.1967. |

[58] | G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson and D. L. Ringach, Topological analysis of population activity in visual cortex, Journal of Vision, 8 (2008), 11 pp. |

[59] | C. Sormani, How Riemannian manifolds converge, in Metric and Differential Geometry, Birkháuser/Springer, Basel, 2012, 91-117. · Zbl 1257.53063 |

[60] | L. E.-J. Spruck, Motion of level sets by mean curvature I, Journal of Differential Geometry, 33, 635-681 (1991) · Zbl 0726.53029 |

[61] | Y. Tong, S. Lombeyda, A. N. Hirani and M. Desbrun, Discrete multiscale vector field decomposition, ACM Transactions on Graphics (TOG), volume 22, ACM, 2003, 445-452. |

[62] | B. Wang; B. Summa; V. Pascucci; M. Vejdemo-Johansson, Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17, 1902-1911 (2011) |

[63] | L. Wang; L. Li; E. Alexov, pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhi pKa, Proteins: Structure, Function and Bioinformatics, 83, 2186-2197 (2015) |

[64] | B. Wang; G.-W. Wei, Object-oriented persistent homology, Journal of Computational Physics, 305, 276-299 (2016) · Zbl 1349.55004 |

[65] | R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, International Journal for Numerical Methods in Biomedical Engineering, (2020), e3376. |

[66] | G.-W. Wei, Differential geometry based multiscale models, Bulletin of Mathematical Biology, 72, 1562-1622 (2010) · Zbl 1198.92001 |

[67] | K. Xia; X. Feng; Z. Chen; Y. Tong; G.-W. Wei, Multiscale geometric modeling of macromolecules Ⅰ: Cartesian representation, Journal of Computational Physics, 257, 912-936 (2014) · Zbl 1349.92016 |

[68] | K. Xia; X. Feng; Y. Tong; G. W. Wei, Persistent homology for the quantitative prediction of fullerene stability, Journal of Computational Chemistry, 36, 408-422 (2015) |

[69] | K. Xia; G.-W. Wei, Persistent homology analysis of protein structure, flexibility and folding, International Journal for Numerical Methods in Biomedical Engineering, 30, 814-844 (2014) |

[70] | K. Xia; G.-W. Wei, Multidimensional persistence in biomolecular data, Journal of Computational Chemistry, 36, 1502-1520 (2015) |

[71] | Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande and G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics, 130 (2009), 144115. |

[72] | S. Zelditch, Spectral determination of analytic bi-axisymmetric plane domains, Geometric & Functional Analysis GAFA, 10, 628-677 (2000) · Zbl 0961.58012 |

[73] | R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong, 3D Hodge decompositions of edge- and face-based vector fields, ACM Transactions on Graphics (TOG), 38 (2019), 181 pp. |

[74] | R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 108. · Zbl 1448.92158 |

[75] | A. Zomorodian; G. Carlsson, Computing persistent homology, Discrete & Computational Geometry, 33, 249-274 (2005) · Zbl 1069.55003 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.