Zhu, Junxia; Chen, Liangyun Cohomology and deformations of 3-dimensional Heisenberg Hom-Lie superalgebras. (English) Zbl 07361072 Czech. Math. J. 71, No. 2, 335-350 (2021). Summary: We study Hom-Lie superalgebras of Heisenberg type. For 3-dimensional Heisenberg Hom-Lie superalgebras we describe their Hom-Lie super structures, compute the cohomology spaces and characterize their infinitesimal deformations. Cited in 1 Document MSC: 17B56 Cohomology of Lie (super)algebras 17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.) 17B61 Hom-Lie and related algebras 17B99 Lie algebras and Lie superalgebras Keywords:Hom-Lie superalgebra; Lie superalgebra; Heisenberg Hom-Lie superalgebra; cohomology; deformation PDF BibTeX XML Cite \textit{J. Zhu} and \textit{L. Chen}, Czech. Math. J. 71, No. 2, 335--350 (2021; Zbl 07361072) Full Text: DOI arXiv OpenURL References: [1] Alvarez, M. A.; Cartes, F., Cohomology and deformations for the Heisenberg Hom-Lie algebras, Linear Multilinear Algebra 67 (2019), 2209-2229 · Zbl 1477.17076 [2] Ammar, F.; Ejbehi, Z.; Makhlouf, A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21 (2011), 813-836 · Zbl 1237.17003 [3] Ammar, F.; Makhlouf, A., Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra 324 (2010), 1513-1528 · Zbl 1258.17008 [4] Ammar, F.; Makhlouf, A.; Saadaoui, N., Cohomology of Hom-Lie superalgebras and \(q\)-deformed Witt superalgebra, Czech. Math. J. 63 (2013), 721-761 · Zbl 1299.17018 [5] Liu, Y.; Chen, L.; Ma, Y., Hom-Nijienhuis operators and \(T^*\)-exentions of Hom-Lie superalgebras, Linear Algebra Appl. 439 (2013), 2131-2144 · Zbl 1281.17033 [6] Makhlouf, A.; Silvestrov, S., Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), 715-739 · Zbl 1201.17012 [7] Peniche, R.; Sánchez-Valenzuela, O. A., On Heisenberg-like super group structures, Ann. Henri Poincaré 10 (2010), 1395-1417 · Zbl 1206.81066 [8] Rodríguez-Vallarte, M.; Salgado, G.; Sánchez-Valenzuela, O. A., Heisenberg Lie superalgebras and their invariant superorthogonal and supersymplectic forms, J. Algebra 332 (2011), 71-86 · Zbl 1264.17007 [9] Sheng, Y., Representations of Hom-Lie algebras, Algebr. Represent. Theory 15 (2012), 1081-1098 · Zbl 1294.17001 [10] Wang, C.; Zhang, Q.; Wei, Z., A classification of low dimensional multiplicative Hom-Lie superalgebras, Open Math. 14 (2016), 613-628 · Zbl 1345.17020 [11] Wang, Z., A Classification of Low Dimensional Lie Superalgebras: Master Thesis, East China Normal University, Shanghai (2006), Chinese This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.