Testing zero-dimensionality of varieties at a point. (English) Zbl 07363380

Summary: Effective methods are introduced for testing zero-dimensionality of varieties at a point. The motivation of this paper is to compute and analyze deformations of isolated hypersurface singularities. As an application, methods for computing local dimensions are also described. For the case where a given ideal contains parameters, the proposed algorithms can output in particular a decomposition of a parameter space into strata according to the local dimension at a point of the associated varieties. The key of the proposed algorithms is the use of the notion of comprehensive Gröbner systems.


13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
14H20 Singularities of curves, local rings
Full Text: DOI arXiv


[1] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms (1997), Berlin: Springer, Berlin
[2] De Jong, T.; Pfister, G., Local Analytic Geometry (2000), Berlin: Vieweg, Berlin · Zbl 0959.32011
[3] Greuel, G-M; Lossen, C.; Shustin, E., Introduction to Singularities and Deformations (2007), Berlin: Springer, Berlin · Zbl 1125.32013
[4] Greuel, G-M; Pfister, G., A Singular Introduction to Commutative Algebra (2008), Berlin: Springer, Berlin · Zbl 1023.13001
[5] Kapur, D.; Sun, D.; Wang, D., An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial systems, J. Symb. Comput., 49, 27-44 (2013) · Zbl 1255.13018
[6] Kapur, D., Lu, D., Monagan, M., Sun, Y., Wang, D.: An efficient algorithm for computing parametric multivariate polynomial GCD. In: Proceedings of ISSAC 2018, ACM, pp. 239-246 (2018) · Zbl 1467.13047
[7] Lojasiewicz, S., Introduction to Complex Analytic Geometry (1991), Basel: Birkhäuser, Basel
[8] Mora, T.: An algorithm to compute the equations to tangent cones. In: LNCS, vol. 144, Springer, pp. 158-165 (1982) · Zbl 0568.68029
[9] Nabeshima, K., On the computation of parametric Gröbner bases for modules and syzygies, Jpn. J. Ind. Appl. Math., 27, 217-238 (2010) · Zbl 1204.13019
[10] Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Proceedings of CASC 2012, LNCS, vol. 7442, Springer, pp. 248-259 (2012) · Zbl 1373.13030
[11] Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Proceedings of ISSAC 2015, ACM, pp. 291-298 (2015) · Zbl 1345.68291
[12] Nabeshima, K.; Tajima, S., Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals, J. Symb. Comput., 82, 91-122 (2017) · Zbl 1430.13026
[13] Nabeshima, K.; Ohara, K.; Tajima, S., Comprehensive Gröbner systems in PBW algebras, Bernstein-Sato ideals and holonomic D-modules, J. Symb. Comput., 89, 146-170 (2018) · Zbl 1428.13047
[14] Nabeshima, K.; Tajima, S., Computation methods of logarithmic vector fields associated with semi-weighted homogeneous isolated hypersurface singularities, Tsukuba J. Math., 42, 2, 191-231 (2018) · Zbl 1418.32019
[15] Samuel, P., La notion de multiplicité en algèbre et en géometrie algébrique, J. Math. Pure Appl., 30, 159-274 (1951) · Zbl 0044.02701
[16] Noro, M., Takeshima, T.: Risa/Asir: a computer algebra system. In: Proceedings of ISSAC 1992, ACM, pp. 387-396(1992). http://www.math.kobe-u.ac.jp/Asir/asir.html · Zbl 0964.68597
[17] Whitney, H., Tangents to an analytic variety, Ann. Math., 81, 496-549 (1965) · Zbl 0152.27701
[18] Whitney, H., Local Properties of Analytic Varieties, in Differential and Combinatorial Topology, 205-244 (1965), Princeton: Princeton Univ. Press, Princeton · Zbl 0129.39402
[19] Whitney, H., Complex Analytic Varieties (1972), Boston: Addison-Wesley, Boston · Zbl 0265.32008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.