×

Nonlinearizing two-parameter eigenvalue problems. (English) Zbl 07365300


MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A18 Eigenvalues, singular values, and eigenvectors
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
65H17 Numerical solution of nonlinear eigenvalue and eigenvector problems
15A22 Matrix pencils
15A69 Multilinear algebra, tensor calculus
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] R. Alam and S. Safique Ahmad, Sensitivity analysis of nonlinear eigenproblems, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 672-695. · Zbl 1420.65042
[2] F. Atkinson, Multiparameter Eigenvalue Problems. Volume I: Matrices and Compact Operators, Academic Press, New York, 1972. · Zbl 0555.47001
[3] F. V. Atkinson and A. B. Mingarelli, Multiparameter Eigenvalue Problems: Sturm-Liouville Theory, CRC Press, Boca Raton, FL, 2011. · Zbl 1222.34001
[4] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP: A collection of nonlinear eigenvalue problems, ACM Trans. Math. Software, 39 (2013), pp. 7:1-7:28. · Zbl 1295.65140
[5] T. Betcke and H. Voss, A Jacobi-Davidson type projection method for nonlinear eigenvalue problems, Future Generation Comput. Syst., 20 (2004), pp. 363-372.
[6] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98. · Zbl 1356.68030
[7] C. Effenberger, Robust successive computation of eigenpairs for nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1231-1256. · Zbl 1297.47067
[8] K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex Manifolds, Grad. Texts. Math. 213, Springer, New York, 2002. · Zbl 1005.32002
[9] M. Greguš, F. Neuman, and F. M. Arscott, Three-point boundary value problems in differential equations, J. Lond. Math. Soc. (2), 2 (1971), pp. 429-436. · Zbl 0226.34010
[10] S. Güttel and F. Tisseur, The nonlinear eigenvalue problem, Acta Numer., 26 (2017), pp. 1-94. · Zbl 1377.65061
[11] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory, Wiley, Hobokan, NJ, 2000.
[12] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: Scalable library for eigenvalue problem computations, in High performance computing for computational science - VEPCAR 2002, Lect. Notes Comput. Sci. 2565, Springer, Berlin, 2003 pp. 377-391. · Zbl 1027.65504
[13] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351-362. · Zbl 1136.65315
[14] D. J. Higham and N. J. Higham, Structured backward error and condition of generalized eigenvalue problems, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 493-512. · Zbl 0935.65032
[15] M. E. Hochstenbach, T. Košir, and B. Plestenjak, A Jacobi-Davidson type method for the two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 477-497. · Zbl 1077.65036
[16] M. E. Hochstenbach, K. Meerbergen, E. Mengi, and B. Plestenjak, Subspace methods for three-parameter eigenvalue problems, Numer. Linear Algebra Appl., (2019), e2240. · Zbl 1463.65071
[17] M. E. Hochstenbach and B. Plestenjak, A Jacobi-Davidson type method for a right definite two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 392-410. · Zbl 1025.65023
[18] M. E. Hochstenbach and B. Plestenjak, Backward error, condition numbers, and pseudospectra for the multiparameter eigenvalue problem, Linear Algebra Appl., 375 (2003), pp. 63-81. · Zbl 1048.65034
[19] M. E. Hochstenbach and B. Plestenjak, Computing several eigenvalues of nonlinear eigenvalue problems by selection, Calcolo, 57 (2020), pp. 1-25. · Zbl 1439.65045
[20] E. Jarlebring, M. Bennedich, G. Mele, E. Ringh, and P. Upadhyaya, NEP-PACK: A Julia Package for Nonlinear Eigenproblems, 2018, https://github.com/nep-pack.
[21] E. Jarlebring, S. Kvaal, and W. Michiels, Computing all pairs \((\lambda,\mu)\) such that \(\lambda\) is a double eigenvalue of \(A + \mu B\)., SIAM J. Matrix Anal. Appl., 32 (2011), pp. 902-927. · Zbl 1245.65043
[22] E. Jarlebring, G. Mele, and O. Runborg, The waveguide eigenvalue problem and the tensor infinite Arnoldi method, SIAM J. Sci. Comput., 39 (2017), pp. A1062-A1088. · Zbl 1366.65104
[23] E. Jarlebring, W. Michiels, and K. Meerbergen, A linear eigenvalue algorithm for the nonlinear eigenvalue problem, Numer. Math., 122 (2012), pp. 169-195. · Zbl 1256.65043
[24] T. Košir, Finite-dimensional multiparameter spectral theory: The nonderogatory case, Linear Algebra Appl., 212 (1994), pp. 45-70. · Zbl 0816.15008
[25] S. Kvaal, E. Jarlebring, and W. Michiels, Computing singularities of perturbation series, Phys. Rev. A, 83 (2011), 032505. · Zbl 1245.65043
[26] S. H. Lui, Domain decomposition methods for eigenvalue problems, J. Comput. Appl. Math., 117 (2000), pp. 17-34. · Zbl 0952.65085
[27] S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigenvalue problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1029-1051. · Zbl 1132.65028
[28] S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971-1004. · Zbl 1132.65027
[29] K. Meerbergen and B. Plestenjak, A Sylvester-Arnoldi type method for the generalized eigenvalue problem with two-by-two operator determinants, Numer. Linear Algebra Appl., 22 (2015), pp. 1131-1146. · Zbl 1349.65122
[30] V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods, GAMM-Mitt., 27 (2004), pp. 121-152. · Zbl 1071.65074
[31] G. Mele, The Infinite Lanczos Method for Symmetric Nonlinear Eigenvalue Problems, tech. report, KTH Royal Institute of Technology, 2018.
[32] G. Mele and E. Jarlebring, On restarting the tensor infinite Arnoldi method, BIT, 58 (2018), pp. 133-162. · Zbl 1386.65132
[33] Y. Nakatsukasa, V. Noferini, and A. Townsend, Vector spaces of linearizations for matrix polynomials: A bivariate polynomial approach, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1-29. · Zbl 1355.65058
[34] A. Neumaier, Residual inverse iteration for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 22 (1985), pp. 914-923. · Zbl 0594.65026
[35] B. Plestenjak, A continuation method for a right definite two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1163-1184. · Zbl 0995.65036
[36] B. Plestenjak, Numerical methods for nonlinear two-parameter eigenvalue problems, BIT, 56 (2016), pp. 241-262. · Zbl 1342.65116
[37] J. E. Roman, C. Campos, E. Romero, and A. Tomas, SLEPc Users Manual, tech. report DSIC-II/24/02 - Revision 3.10, D. Sistemes Informàtics i Computació, Universitat Politècnica de València, 2018.
[38] A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 10 (1973), pp. 674-689. · Zbl 0261.65032
[39] M. Shao, Conquering algebraic nonlinearity in nonlinear eigenvalue problems, in Proceedings of the SIAM Conference Applied Linear Algebra, Hong Kong, Joint work with Z. Bai, W. Gao, and X. Huang, 2018.
[40] T. Slivnik and G. TomÅ¡ič, A numerical method for the solution of two-parameter eigenvalue problems, J. Comput. Appl. Math., 15 (1986), pp. 109-115. · Zbl 0619.65028
[41] A. Spence and C. Poulton, Photonic band structure calculations using nonlinear eigenvalue techniques, J. Comput. Phys., 204 (2005), pp. 65-81. · Zbl 1143.82336
[42] Y. Su and Z. Bai, Solving rational eigenvalue problems via linearization, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 201-216. · Zbl 1222.65034
[43] D. Szyld and F. Xue, Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. Extreme eigenvalues, Math. Comp., 85 (2016), pp. 2887-2918. · Zbl 1344.65045
[44] J. Tausch and J. Butler, Floquet multipliers of periodic waveguides via Dirichlet-to-Neumann maps, J. Comput. Phys., 159 (2000), pp. 90-102. · Zbl 0972.78016
[45] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), pp. 235-286. · Zbl 0985.65028
[46] G. Unger, Convergence orders of iterative methods for nonlinear eigenvalue problems, in Advanced Finite Element Methods and Applications, Springer, New York, 2013, pp. 217-237. · Zbl 1263.65049
[47] H. Unger, Nichtlineare Behandlung von Eigenwertaufgaben, Z. Angew. Math. Mech., 30 (1950), pp. 281-282. English translation, http://www.math.tu-dresden.de/ schwetli/Unger.html. · Zbl 0040.06602
[48] R. Van Beeumen, O. Marques, E. G. Ng, C. Yang, Z. Bai, L. Ge, O. Kononenko, Z. Li, C.-K. Ng, and L. Xiao, Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation, J. Comput. Phys., 374 (2018), pp. 1031-1043. · Zbl 1416.78039
[49] H. Voss, An Arnoldi method for nonlinear eigenvalue problems, BIT, 44 (2004), pp. 387-401. · Zbl 1066.65059
[50] H. Voss, Chapter. Nonlinear eigenvalue problems in Handbook in Linear Algebra, CRC Press, Boca Raton, FL, 2012.
[51] F. Xue, A block preconditioned harmonic projection method for large-scale nonlinear eigenvalue problems, SIAM J. Sci. Comput., 40 (2018), pp. A1809-A1835.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.