Systems of polynomial equations, higher-order tensor decompositions, and multidimensional harmonic retrieval: a unifying framework. Part I: the canonical polyadic decomposition. (English) Zbl 1471.13061


13P15 Solving polynomial systems; resultants
15A69 Multilinear algebra, tensor calculus
65H04 Numerical computation of roots of polynomial equations
Full Text: DOI


[1] K. Batselier, A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials, Ph.D thesis, KU Leuven — ESAT/STADIUS, 2013.
[2] C. Beltrán, P. Breiding, and N. Vannieuwenhoven, Pencil-based algorithms for tensor rank decomposition are not stable, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 739-773. · Zbl 1451.14170
[3] B. Buchberger, Gröbner bases: A short introduction for systems theorists, in Computer Aided Systems Theory, Lecture Notes in Comput. Sci. 2178, Springer, Berlin, 2001, pp. 1-19. · Zbl 1023.68882
[4] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan, Tensor decompositions for signal processing applications: From two-way to multiway component analysis, IEEE Signal Process. Mag., 32 (2015), pp. 145-163.
[5] D. Cox, J. Little, and D. O’shea, Using Algebraic Geometry, Springer-Verlag, Berlin, 1998, https://doi.org/10.1007/b138611.
[6] T. Davis, Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization, ACM Trans. Math. Software, 38 (2011), pp. 8:1-8:22, https://doi.org/10.1145/2049662.2049670. · Zbl 1365.65122
[7] L. De Lathauwer, A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 642-666, https://doi.org/10.1137/040608830. · Zbl 1126.15007
[8] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253-1278, https://doi.org/10.1137/S0895479896305696. · Zbl 0962.15005
[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 295-327, https://doi.org/10.1137/S089547980139786X. · Zbl 1080.65031
[10] I. Domanov and L. De Lathauwer, On the uniqueness of the canonical polyadic decomposition of third-order tensors-Part I: Basic results and uniqueness of one factor matrix, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 855-875. · Zbl 1282.15019
[11] I. Domanov and L. De Lathauwer, Generic uniqueness of a structured matrix factorization and applications in blind source separation, IEEE J. Sel. Top. Signal Process., 10 (2016), pp. 701-711, https://doi.org/10.1109/JSTSP.2016.2526971.
[12] P. Dreesen, Back to the Roots: Polynomial System Solving Using Linear Algebra, Ph.D thesis, KU Leuven — ESAT/STADIUS, 2013.
[13] P. Dreesen, K. Batselier, and B. De Moor, Back to the roots: Polynomial system solving, linear algebra, systems theory, IFAC Proc., 45 (2012), pp. 1203-1208, https://doi.org/10.3182/20120711-3-BE-2027.00217.
[14] P. Dreesen, K. Batselier, and B. De Moor, On the null spaces of the Macaulay matrix, Linear Algebra Appl., 460 (2014), pp. 259-289, https://doi.org/10.1016/j.laa.2014.07.035. · Zbl 1297.15041
[15] P. Dreesen, K. Batselier, and B. De Moor, On Polynomial System Solving and Multidimensional Realization Theory, Tech. Report 15-145, KU Leuven — ESAT/STADIUS, 2015. · Zbl 1405.93071
[16] G. Golub and C. Van Loan, Matrix Computations, 4th ed., John Hopkins University Press, Baltimore, MD, 2013. · Zbl 1268.65037
[17] J. Harris, Algebraic Geometry: A First Course, Springer-Verlag, Berlin, 1998, https://doi.org/10.1007/978-1-4757-2189-8. · Zbl 0779.14001
[18] C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), p. 45. · Zbl 1281.68126
[19] F. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6 (1927), pp. 164-189, https://doi.org/10.1002/sapm192761164. · JFM 53.0095.01
[20] T. Jiang and N. Sidiropoulos, Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints, IEEE Trans. Signal Process., 52 (2004), pp. 2625-2636. · Zbl 1369.94186
[21] T. Jiang, N. Sidiropoulos, and J. ten Berge, Almost-sure identifiability of multidimensional harmonic retrieval, IEEE Trans. Signal Process., 49 (2001), pp. 1849-1859, https://doi.org/10.1109/78.942615. · Zbl 1369.94423
[22] G. Jónsson and S. Vavasis, Accurate solution of polynomial equations using Macaulay resultant matrices, Math. Comp., 74 (2004), pp. 221-262, https://doi.org/10.1090/S0025-5718-04-01722-3. · Zbl 1083.65052
[23] J. Landsberg, Tensors: Geometry and Applications, American Mathematical Society, Providence, RI, 2012, https://doi.org/10.1090/gsm/128. · Zbl 1238.15013
[24] S. E. Leurgans, R. T. Ross, and R. B. Abel, A decomposition for three-way arrays, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 1064-1083, http://dx.doi.org/10.1137/0614071. · Zbl 0788.65145
[25] R. Roy and T. Kailath, ESPRIT — estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acoust. Speech Signal Process., 37 (1989), pp. 984-995, https://doi.org/10.1109/29.32276.
[26] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Trans. Signal Process., 65 (2017), pp. 3551-3582. · Zbl 1415.94232
[27] L. Sorber, M. Van Barel, and L. De Lathauwer, Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-\(({L}_r,{L}_r,1)\) terms, and a new generalization, SIAM J. Optim., 23 (2013), pp. 695-720, https://doi.org/10.1137/120868323. · Zbl 1277.90073
[28] M. Sørensen and L. De Lathauwer, Multidimensional harmonic retrieval via coupled canonical polyadic decomposition – Part I: Model and identifiability, IEEE Trans. Signal Process., 65 (2017), pp. 517-527, https://doi.org/10.1109/TSP.2016.2614796. · Zbl 1414.94579
[29] M. Sørensen and L. De Lathauwer, Multidimensional harmonic retrieval via coupled canonical polyadic decomposition – Part II: Algorithm and multirate sampling, IEEE Trans. Signal Process., 65 (2017), pp. 528-539, https://doi.org/10.1109/TSP.2017.2706183. · Zbl 1414.94580
[30] H. Stetter, Numerical Polynomial Algebra, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2004, https://doi.org/10.1137/1.9780898717976. · Zbl 1058.65054
[31] S. Telen, Numerical root finding via Cox rings, J. Pure Appl. Algebra, 224 (2020), 106367, https://doi.org/10.1016/j.jpaa.2020.106367. · Zbl 1442.14187
[32] S. Telen, Solving Systems of Polynomial Equations, PhD thesis, KU Leuven - Faculty of Engineering Science, 2020.
[33] S. Telen, B. Mourrain, and M. V. Barel, Solving polynomial systems via truncated normal forms, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1421-1447, https://doi.org/10.1137/17M1162433. · Zbl 1401.65054
[34] L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997. · Zbl 0874.65013
[35] A.-J. Van Der Veen and A. Paulraj, An analytical constant modulus algorithm, IEEE Trans. Signal Process., 44 (1996), pp. 1136-1155.
[36] J. Vanderstukken, A. Stegeman, and L. De Lathauwer, Systems of Polynomial Equations, Higher-Order Tensor Decompositions and Multidimensional Harmonic Retrieval: A Unifying Framework – Part II: The Block-Term Decomposition, Tech. Report 17-134, KU Leuven — ESAT/STADIUS, 2017.
[37] J. Verschelde, Homotopy Continuation Methods for Solving Polynomial Systems, Ph.D thesis, KU Leuven — Faculty of Engineering Science, 1996.
[38] J. Verschelde, Algorithm 795, PHCpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software, 25 (1999), pp. 251-276, https://doi.org/10.1145/317275.317286. · Zbl 0961.65047
[39] N. Vervliet and L. De Lathauwer, Numerical optimization based algorithms for data fusion, in Data Fusion Methodology and Applications, M. Cocchi, ed., Elsevier, New York, 2019, pp. 81-128.
[40] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab 3.0, Mar. 2016, http://www.tensorlab.net. Available online.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.