×

zbMATH — the first resource for mathematics

Network modeling in biology: statistical methods for gene and brain networks. (English) Zbl 07368221
Summary: The rise of network data in many different domains has offered researchers new insights into the problem of modeling complex systems and propelled the development of numerous innovative statistical methodologies and computational tools. In this paper, we primarily focus on two types of biological networks, gene networks and brain networks, where statistical network modeling has found both fruitful and challenging applications. Unlike other network examples such as social networks where network edges can be directly observed, both gene and brain networks require careful estimation of edges using measured data as a first step. We provide a discussion on existing statistical and computational methods for edge estimation and subsequent statistical inference problems in these two types of biological networks.
MSC:
62-XX Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aach, J. and Church, G. M. (2001). Aligning gene expression time series with time warping algorithms. Bioinformatics 17 495-508.
[2] Aghdam, R., Ganjali, M., Zhang, X. and Eslahchi, C. (2015). CN: A consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test. Mol. BioSyst. 11 942-949.
[3] Ahn, M., Shen, H., Lin, W. and Zhu, H. (2015). A sparse reduced rank framework for group analysis of functional neuroimaging data. Statist. Sinica 25 295-312. · Zbl 06497347
[4] Aibar, S., González-Blas, C. B., Moerman, T., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.-C., Geurts, P., Aerts, J. et al. (2017). SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14 1083-1086.
[5] Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2008). Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9 1981-2014. · Zbl 1225.68143
[6] Aittokallio, T. and Schwikowski, B. (2006). Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7 243-255.
[7] Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T. and Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24 663-676.
[8] Amar, D., Safer, H. and Shamir, R. (2013). Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput. Biol. 9 Art. ID e1002955.
[9] Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11 Art. ID R106.
[10] Bacher, R., Chu, L.-F., Leng, N., Gasch, A. P., Thomson, J. A., Stewart, R. M., Newton, M. and Kendziorski, C. (2016). SCnorm: A quantile-regression based approach for robust normalization of single-cell RNA-seq data. bioRxiv 090167.
[11] Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo, J. Y., Robert, F., Gordon, D. B., Fraenkel, E., Jaakkola, T. S. et al. (2003). Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21 1337-1342.
[12] Bar-Joseph, Z., Gitter, A. and Simon, I. (2012). Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13 552-564.
[13] Barabási, A.-L., Gulbahce, N. and Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 12 56-68.
[14] Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 5 101-113.
[15] Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R. and Califano, A. (2005). Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37 382-390.
[16] Ben-Dor, A., Shamir, R. and Yakhini, Z. (1999). Clustering gene expression patterns. J. Comput. Biol. 6 281-297.
[17] Berg, J. and Lässig, M. (2004). Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. USA 101 14689-14694.
[18] Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., Teichmann, S. A., Marioni, J. C. and Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33 155-160.
[19] Bullmore, E. and Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev., Neurosci. 10 186-198.
[20] Butte, A. J. and Kohane, I. S. (1999). Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. In Biocomputing 2000 418-429. World Scientific, Singapore.
[21] Cabreros, I., Abbe, E. and Tsirigos, A. (2016). Detecting community structures in hi-c genomic data. In 2016 Annual Conference on Information Science and Systems (CISS) 584-589. IEEE, Los Alamitos, CA.
[22] Cai, T., Liu, W. and Luo, X. (2011). A constrained \(\ell_1\) minimization approach to sparse precision matrix estimation. J. Amer. Statist. Assoc. 106 594-607. · Zbl 1232.62087
[23] Calhoun, V. D., Miller, R., Pearlson, G. and Adali, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84 262-274.
[24] Cao, X., Sandstede, B. and Luo, X. (2019). A functional data method for causal dynamic network modeling of task-related fMRI. Front. Neurosci. 13 Art. ID 127.
[25] Carter, S. L., Brechbühler, C. M., Griffin, M. and Bond, A. T. (2004). Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20 2242-2250.
[26] Cassidy, B., Rae, C. and Solo, V. (2014). Brain activity: Connectivity, sparsity, and mutual information. IEEE Trans. Med. Imag. 34 846-860.
[27] Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T., Qin, J. and Zoghbi, H. Y. (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320 1224-1229.
[28] Chan, T. E., Stumpf, M. P. and Babtie, A. C. (2017). Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5 251-267.
[29] Chavali, S., Barrenas, F., Kanduri, K. and Benson, M. (2010). Network properties of human disease genes with pleiotropic effects. BMC Syst. Biol. 4 Art. ID 78.
[30] Chen, G., Ning, B. and Shi, T. (2019). Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. 10 Art. ID 317.
[31] Chen, J., Bardes, E. E., Aronow, B. J. and Jegga, A. G. (2009). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37 W305-W311.
[32] Chen, K.-C., Wang, T.-Y., Tseng, H.-H., Huang, C.-Y. F. and Kao, C.-Y. (2005). A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21 2883-2890.
[33] Chen, S., Kang, J., Xing, Y. and Wang, G. (2015). A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks. Hum. Brain Mapp. 36 5196-5206.
[34] Chickering, D. M., Heckerman, D. and Meek, C. (2004). Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5 1287-1330. · Zbl 1222.68169
[35] Chun, H., Zhang, X. and Zhao, H. (2015). Gene regulation network inference with joint sparse Gaussian graphical models. J. Comput. Graph. Statist. 24 954-974.
[36] Ciriello, G. and Guerra, C. (2008). A review on models and algorithms for motif discovery in protein-protein interaction networks. Brief. Funct. Genomics Proteomics 7 147-156.
[37] Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D. and Lindquist, M. A. (2012). Dynamic connectivity regression: Determining state-related changes in brain connectivity. NeuroImage 61 907-920.
[38] Da Rocha, E. L., Rowe, R. G., Lundin, V., Malleshaiah, M., Jha, D. K., Rambo, C. R., Li, H., North, T. E., Collins, J. J. et al. (2018). Reconstruction of complex single-cell trajectories using CellRouter. Nat. Commun. 9 Art. ID 892.
[39] Daub, C. O., Steuer, R., Selbig, J. and Kloska, S. (2004). Estimating mutual information using B-spline functions—An improved similarity measure for analysing gene expression data. BMC Bioinform. 5 Art. ID 118.
[40] Daudin, J.-J., Picard, F. and Robin, S. (2008). A mixture model for random graphs. Stat. Comput. 18 173-183.
[41] De La Fuente, A., Bing, N., Hoeschele, I. and Mendes, P. (2004). Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20 3565-3574.
[42] Dembélé, D. and Kastner, P. (2003). Fuzzy C-means method for clustering microarray data. Bioinformatics 19 973-980.
[43] Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P. et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31 968-980.
[44] Di Gesú, V., Giancarlo, R., Bosco, G. L., Raimondi, A. and Scaturro, D. (2005). GenClust: A genetic algorithm for clustering gene expression data. BMC Bioinform. 6 Art. ID 289.
[45] Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485 376-380.
[46] Dixon, S. J., Costanzo, M., Baryshnikova, A., Andrews, B. and Boone, C. (2009). Systematic mapping of genetic interaction networks. Annu. Rev. Genet. 43 601-625.
[47] Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C. et al. (2010). Prediction of individual brain maturity using fMRI. Science 329 1358-1361.
[48] Duò, A., Robinson, M. D. and Soneson, C. (2018). A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Res. 7 Art. ID 1141.
[49] Durante, D. and Dunson, D. B. (2018). Bayesian inference and testing of group differences in brain networks. Bayesian Anal. 13 29-58. · Zbl 06873717
[50] Eberwine, J., Sul, J.-Y., Bartfai, T. and Kim, J. (2014). The promise of single-cell sequencing. Nat. Methods 11 25-27.
[51] Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 14863-14868.
[52] Enright, A. J., Van Dongen, S. and Ouzounis, C. A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30 1575-1584.
[53] Estrada, E. (2006). Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6 35-40.
[54] Feng, J., Barbano, P. E. and Mishra, B. (2004). Time-frequency feature detection for time-course microarray data. In Proceedings of the 2004 ACM Symposium on Applied Computing 128-132. ACM, New York.
[55] Fiecas, M. and Ombao, H. (2011). The generalized shrinkage estimator for the analysis of functional connectivity of brain signals. Ann. Appl. Stat. 5 1102-1125. · Zbl 1232.62147
[56] Fiers, M. W. E. J., Minnoye, L., Aibar, S., González-Blas, C. B., Atak, Z. K. and Aerts, S. (2018). Mapping gene regulatory networks from single-cell omics data. Brief. Funct. Genomics 17 246-254.
[57] Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter, C. K., Miller, H. W., McElrath, M. J. et al. (2015). MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16 Art. ID 278.
[58] Fornito, A., Zalesky, A. and Breakspear, M. (2013). Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage 80 426-444.
[59] Fox, M. D. and Greicius, M. (2010). Clinical applications of resting state functional connectivity. Front. Syst. Neurosci. 4 Art. ID 19.
[60] Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. and Feldman, M. W. (2002). Evolutionary rate in the protein interaction network. Science 296 750-752.
[61] Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432-441. · Zbl 1143.62076
[62] Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 2 56-78.
[63] Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connect. 1 13-36.
[64] Friston, K. J., Harrison, L. and Penny, W. (2003). Dynamic causal modelling. NeuroImage 19 1273-1302.
[65] Fu, L. and Medico, E. (2007). FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8 Art. ID 3.
[66] Gambardella, G., Moretti, M. N., De Cegli, R., Cardone, L., Peron, A. and Di Bernardo, D. (2013). Differential network analysis for the identification of condition-specific pathway activity and regulation. Bioinformatics 29 1776-1785.
[67] Gao, L., Sun, P.-G. and Song, J. (2009). Clustering algorithms for detecting functional modules in protein interaction networks. J. Bioinform. Comput. Biol. 7 217-242.
[68] Gill, R., Datta, S. and Datta, S. (2010). A statistical framework for differential network analysis from microarray data. BMC Bioinform. 11 Art. ID 95.
[69] Goltsev, Y. and Papatsenko, D. (2009). Time warping of evolutionary distant temporal gene expression data based on noise suppression. BMC Bioinform. 10 Art. ID 353.
[70] Greene, C. S., Krishnan, A., Wong, A. K., Ricciotti, E., Zelaya, R. A., Himmelstein, D. S., Zhang, R., Hartmann, B. M., Zaslavsky, E. et al. (2015). Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47 569-576.
[71] Greicius, M. D., Krasnow, B., Reiss, A. L. and Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100 253-258.
[72] Guala, D. and Sonnhammer, E. L. L. (2017). A large-scale benchmark of gene prioritization methods. Sci. Rep. 7 Art. ID 46598.
[73] Guimera, R. and Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature 433 895-900.
[74] Guo, M., Wang, H., Potter, S. S., Whitsett, J. A. and Xu, Y. (2015). SINCERA: A pipeline for single-cell RNA-seq profiling analysis. PLoS Comput. Biol. 11 Art. ID e1004575.
[75] Ha, M. J., Baladandayuthapani, V. and Do, K.-A. (2015). DINGO: Differential network analysis in genomics. Bioinformatics 31 3413-3420.
[76] Haque, A., Engel, J., Teichmann, S. A. and Lönnberg, T. (2017). A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Gen. Med. 9 Art. ID 75.
[77] Hauser, A. and Bühlmann, P. (2015). Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 291-318. · Zbl 1414.62021
[78] Hedden, T., Van Dijk, K. R., Becker, J. A., Mehta, A., Sperling, R. A., Johnson, K. A. and Buckner, R. L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29 12686-12694.
[79] Holland, P. W., Laskey, K. B. and Leinhardt, S. (1983). Stochastic blockmodels: First steps. Soc. Netw. 5 109-137.
[80] Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., Murray, J. I., Raj, A., Li, M. et al. (2018). SAVER: Gene expression recovery for single-cell RNA sequencing. Nat. Methods 15 539-542.
[81] Huang, S., Jin, J. and Yao, Z. (2016). Partial correlation screening for estimating large precision matrices, with applications to classification. Ann. Statist. 44 2018-2057. · Zbl 1349.62269
[82] Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 2271-2282.
[83] Ideker, T. and Krogan, N. J. (2012). Differential network biology. Mol. Syst. Biol. 8 Art. ID 565.
[84] Ideker, T. and Sharan, R. (2008). Protein networks in disease. Genome Res. 18 644-652.
[85] Ilicic, T., Kim, J. K., Kolodziejczyk, A. A., Bagger, F. O., McCarthy, D. J., Marioni, J. C. and Teichmann, S. A. (2016). Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17 Art. ID 29.
[86] Irrthum, A., Wehenkel, L., Geurts, P. et al. (2010). Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5 Art. ID e12776.
[87] Islam, S., Kjällquist, U., Moliner, A., Zajac, P., Fan, J.-B., Lönnerberg, P. and Linnarsson, S. (2011). Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21 1160-1167.
[88] Islam, S., Zeisel, A., Joost, S., Manno, G. L., Zajac, P., Kasper, M., Lönnerberg, P. and Linnarsson, S. (2014). Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11 163-166.
[89] Jeong, H., Mason, S. P., Barabási, A-L. and Oltvai, Z. N. (2001). Lethality and centrality in protein networks. Nature 411 41-42.
[90] Ji, Z. and Ji, H. (2016). TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44 Art. ID e117.
[91] Jiang, H., Sohn, L. L., Huang, H. and Chen, L. (2018). Single cell clustering based on cell-pair differentiability correlation and variance analysis. Bioinformatics 34 3684-3694.
[92] Jiang, R., Tu, Z., Chen, T. and Sun, F. (2006). Network motif identification in stochastic networks. Proc. Natl. Acad. Sci. USA 103 9404-9409.
[93] Jonsson, P. F. and Bates, P. A. (2006). Global topological features of cancer proteins in the human interactome. Bioinformatics 22 2291-2297.
[94] Joy, M. P., Brock, A., Ingber, D. E. and Huang, S. (2005). High-betweenness proteins in the yeast protein interaction network. BioMed Res. Int. 2005 96-103.
[95] Kang, H., Ombao, H., Linkletter, C., Long, N. and Badre, D. (2012). Spatio-spectral mixed-effects model for functional magnetic resonance imaging data. J. Amer. Statist. Assoc. 107 568-577. · Zbl 1261.62061
[96] Kang, H. M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., Wan, E., Wong, S., Byrnes, L. et al. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36 89-94.
[97] Kang, J., Bowman, F. D., Mayberg, H. and Liu, H. (2016). A depression network of functionally connected regions discovered via multi-attribute canonical correlation graphs. NeuroImage 141 431-441.
[98] Karrer, B. and Newman, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Phys. Rev. E (3) 83 Art. ID 016107.
[99] Kashtan, N., Itzkovitz, S., Milo, R. and Alon, U. (2004). Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20 1746-1758.
[100] Kato, M., Tsunoda, T. and Takagi, T. (2001). Lag analysis of genetic networks in the cell cycle of budding yeast. Genome Inform. 12 266-267.
[101] Kharchenko, P. V., Silberstein, L. and Scadden, D. T. (2014). Bayesian approach to single-cell differential expression analysis. Nat. Methods 11 740-742.
[102] Kim, J., Wozniak, J. R., Mueller, B. A., Shen, X. and Pan, W. (2014). Comparison of statistical tests for group differences in brain functional networks. NeuroImage 101 681-694.
[103] Kim, K., Jiang, K., Teng, S. L., Feldman, L. J. and Huang, H. (2012). Using biologically interrelated experiments to identify pathway genes in Arabidopsis. Bioinformatics 28 815-822.
[104] Kim, S., Imoto, S. and Miyano, S. (2004). Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75 57-65. · Zbl 1112.92322
[105] Kiselev, V. Y., Andrews, T. S. and Hemberg, M. (2019). Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20 273-282.
[106] Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K. N., Reik, W., Barahona, M. et al. (2017). SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods 14 483-486.
[107] Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D. A. and Kirschner, M. W. (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161 1187-1201.
[108] Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. and Teichmann, S. A. (2015). The technology and biology of single-cell RNA sequencing. Mol. Cell 58 610-620.
[109] Kumari, S., Nie, J., Chen, H.-S., Ma, H., Stewart, R., Li, X., Lu, M.-Z., Taylor, W. M. and Wei, H. (2012). Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS ONE 7 Art. ID e50411.
[110] Kundu, S. and Kang, J. (2016). Semiparametric Bayes conditional graphical models for imaging genetics applications. Stat 5 322-337.
[111] Kwon, A. T., Hoos, H. H. and Ng, R. (2003). Inference of transcriptional regulation relationships from gene expression data. In Proceedings of the 2003 ACM Symposium on Applied Computing 135-140. ACM, New York.
[112] Langfelder, P. and Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9 Art. ID 559.
[113] Lazar, N. (2008). The Statistical Analysis of Functional MRI Data. Springer, New York. · Zbl 1312.62004
[114] Le Dily, F., Baù, D., Pohl, A., Vicent, G. P., Serra, F., Soronellas, D., Castellano, G., Wright, R. H., Ballare, C. et al. (2014). Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28 2151-2162.
[115] Lee, H., Chung, M. K., Kang, H., Kim, B.-N. and Lee, D. S. (2011). Discriminative persistent homology of brain networks. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 841-844. IEEE, Los Alamitos, CA.
[116] Lehner, B., Crombie, C., Tischler, J., Fortunato, A. and Fraser, A. G. (2006). Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat. Genet. 38 896-903.
[117] Lemmens, K., De Bie, T., Dhollander, T., De Keersmaecker, S. C., Thijs, I. M., Schoofs, G., De Weerdt, A., De Moor, B., Vanderleyden, J. et al. (2009). DISTILLER: A data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biol. 10 Art. ID R27.
[118] Li, B. and Solea, E. (2018). A nonparametric graphical model for functional data with application to brain networks based on fMRI. J. Amer. Statist. Assoc. 113 1637-1655. · Zbl 1409.62074
[119] Li, H. and Gui, J. (2005). Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 7 302-317. · Zbl 1169.62378
[120] Li, K.-C. (2002). Genome-wide coexpression dynamics: Theory and application. Proc. Natl. Acad. Sci. USA 99 16875-16880.
[121] Li, K.-C., Palotie, A., Yuan, S., Bronnikov, D., Chen, D., Wei, X., Choi, O.-W., Saarela, J. and Peltonen, L. (2007). Finding disease candidate genes by liquid association. Genome Biol. 8 Art. ID R205.
[122] Li, Q., Sentürk, D., Sugar, C. A., Jeste, S., DiStefano, C., Frohlich, J. and Telesca, D. (2019). Inferring brain signals synchronicity from a sample of EEG readings. J. Amer. Statist. Assoc. 114 991-1001. · Zbl 1428.62474
[123] Li, W. V. and Li, J. J. (2018). An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9 Art. ID 997.
[124] Lin, A., Wang, R. T., Ahn, S., Park, C. C. and Smith, D. J. (2010). A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res. 20 1122-1132.
[125] Lin, P., Troup, M. and Ho, J. W. K. (2017). CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18 Art. ID 59.
[126] Lin, Z., Wang, T., Yang, C. and Zhao, H. (2017). On joint estimation of Gaussian graphical models for spatial and temporal data. Biometrics 73 769-779.
[127] Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statist. Sci. 23 439-464. · Zbl 1329.62296
[128] Liu, F., Zhang, S.-W., Guo, W.-F., Wei, Z.-G. and Chen, L. (2016). Inference of gene regulatory network based on local Bayesian networks. PLoS Comput. Biol. 12 Art. ID e1005024.
[129] Liu, K., Theusch, E., Zhou, Y., Ashuach, T., Dose, A., Bickel, P. J., Medina, M. W. and Huang, H. (2019). GeneFishing: A method to reconstruct context-specific portraits of biological processes and its application to cholesterol metabolism. Proc. Natl. Acad. Sci. USA 116 18943-18950.
[130] Lun, A. T. L., Bach, K. and Marioni, J. C. (2016). Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17 Art. ID 75.
[131] Luo, X. and Wei, Y. (2018). Nonparametric Bayesian learning of heterogeneous dynamic transcription factor networks. Ann. Appl. Stat. 12 1749-1772. · Zbl 1405.62189
[132] Ma, C., Xin, M., Feldmann, K. A. and Wang, X. (2014). Machine learning-based differential network analysis: A study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26 520-537.
[133] Maathuis, M. H., Kalisch, M. and Bühlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37 3133-3164. · Zbl 1191.62118
[134] Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N. et al. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161 1202-1214.
[135] Magwene, P. M. and Kim, J. (2004). Estimating genomic coexpression networks using first-order conditional independence. Genome Biol. 5 Art. ID R100.
[136] Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., Aderhold, A., Bonneau, R. et al. (2012). Wisdom of crowds for robust gene network inference. Nat. Methods 9 796-804.
[137] Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Floreano, D. and Stolovitzky, G. (2010). Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl. Acad. Sci. USA 107 6286-6291.
[138] Marbach, D., Roy, S., Ay, F., Meyer, P. E., Candeias, R., Kahveci, T., Bristow, C. A. and Kellis, M. (2012). Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res. 22 1334-1349.
[139] Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R. and Califano, A. (2006). ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7 Art. ID S7.
[140] Matsumoto, H., Kiryu, H., Furusawa, C., Ko, M. S. H., Ko, S. B. H., Gouda, N., Hayashi, T. and Nikaido, I. (2017). SCODE: An efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33 2314-2321.
[141] Mclntosh, A. R. and Gonzalez-Lima, F. (1994). Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 2 2-22.
[142] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. · Zbl 1113.62082
[143] Meinshausen, N., Hauser, A., Mooij, J. M., Peters, J., Versteeg, P. and Bühlmann, P. (2016). Methods for causal inference from gene perturbation experiments and validation. Proc. Natl. Acad. Sci. USA 113 7361-7368.
[144] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science 298 824-827.
[145] Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A. J., Tanaka, Y., Wilkinson, A. C., Buettner, F., Macaulay, I. C., Jawaid, W. et al. (2015). Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33 269-276.
[146] Moreau, Y. and Tranchevent, L.-C. (2012). Computational tools for prioritizing candidate genes: Boosting disease gene discovery. Nat. Rev. Genet. 13 523-536.
[147] Moschopoulos, C. N., Pavlopoulos, G. A., Schneider, R., Likothanassis, S. D. and Kossida, S. (2009). GIBA: A clustering tool for detecting protein complexes. BMC Bioinform. 10 Art. ID S11.
[148] Muro, S., Takemasa, I., Oba, S., Matoba, R., Ueno, N., Maruyama, C., Yamashita, R., Sekimoto, M., Yamamoto, H. et al. (2003). Identification of expressed genes linked to malignancy of human colorectal carcinoma by parametric clustering of quantitative expression data. Genome Biol. 4 Art. ID R21.
[149] Nair, A., Chetty, M. and Wangikar, P. P. (2015). Improving gene regulatory network inference using network topology information. Mol. BioSyst. 11 2449-2463.
[150] Narayan, M. (2015). Inferential methods to find differences in populations of graphical models with applications to functional connectomics. Ph.D. thesis, Rice Univ.
[151] Newman, M. E. J. (2010). Networks: An Introduction. Oxford Univ. Press, Oxford. · Zbl 1195.94003
[152] Norton, H. K., Emerson, D. J., Huang, H., Kim, J., Titus, K. R., Gu, S., Bassett, D. S. and Phillips-Cremins, J. E. (2018). Detecting hierarchical genome folding with network modularity. Nat. Methods 15 119-122.
[153] Nunez, M. D., Nunez, P. L., Srinivasan, R., Ombao, H., Linquist, M., Thompson, W. and Aston, J. (2016). Electroencephalography (EEG): Neurophysics, experimental methods, and signal processing. In Handbook of Neuroimaging Data Analysis. Chapman & Hall/CRC Handbooks of Modern Statistical Methods 175-197. CRC Press, Boca Raton, FL.
[154] Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., Goto, S. and Kanehisa, M. (2008). KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 36 W423-W426.
[155] Ombao, H., Schroder, A. L., Euan, C., Ting, C. M. and Samdin, B. (2016). Advanced topics for modeling electroencephalograms. In Handbook of Neuroimaging Data Analysis (H. Ombao, M. Linquist, W. Thompson and J. Aston, eds.) 567-626. Chapman & Hall/CRC, Boca Raton, FL.
[156] Omranian, N., Eloundou-Mbebi, J. M. O., Mueller-Roeber, B. and Nikoloski, Z. (2016). Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. 6 Art. ID 20533.
[157] Ozgür, A., Vu, T., Erkan, G. and Radev, D. R. (2008). Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24 i277-i285.
[158] Paladugu, S. R., Zhao, S., Ray, A. and Raval, A. (2008). Mining protein networks for synthetic genetic interactions. BMC Bioinform. 9 Art. ID 426.
[159] Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., Schneider, R. and Bagos, P. G. (2011). Using graph theory to analyze biological networks. BioData Min. 4 Art. ID 10.
[160] Pei, Y., Gao, Q., Li, J. and Zhao, X. (2014). Identifying local co-regulation relationships in gene expression data. J. Theoret. Biol. 360 200-207. · Zbl 1343.92169
[161] Peng, J., Zhou, N. and Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. J. Amer. Statist. Assoc. 104 735-746. · Zbl 1388.62046
[162] Peters, J., Bühlmann, P. and Meinshausen, N. (2016). Causal inference by using invariant prediction: Identification and confidence intervals. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 947-1012. · Zbl 1414.62297
[163] Petukhov, V., Guo, J., Baryawno, N., Severe, N., Scadden, D. T., Samsonova, M. G. and Kharchenko, P. V. (2018). dropEst: Pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome Biol. 19 Art. ID 78.
[164] Picelli, S. (2017). Single-cell RNA-sequencing: The future of genome biology is now. RNA Biol. 14 637-650.
[165] Picelli, S., Björklund, Å. K., Faridani, O. R., Sagasser, S., Winberg, G. and Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10 1096-1098.
[166] Pina, C., Teles, J., Fugazza, C., May, G., Wang, D., Guo, Y., Soneji, S., Brown, J., Edén, P. et al. (2015). Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep. 11 1503-1510.
[167] Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M. et al. (2011). Functional network organization of the human brain. Neuron 72 665-678.
[168] Qiao, X., Guo, S. and James, G. M. (2019). Functional graphical models. J. Amer. Statist. Assoc. 114 211-222. · Zbl 07095871
[169] Qiu, A., Lee, A., Tan, M. and Chung, M. K. (2015). Manifold learning on brain functional networks in aging. Med. Image Anal. 20 52-60.
[170] Qiu, H., Han, F., Liu, H. and Caffo, B. (2016). Joint estimation of multiple graphical models from high dimensional time series. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 487-504. · Zbl 1414.62379
[171] Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y.-A. and Trapnell, C. (2017). Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14 309-315.
[172] Ramoni, M. F., Sebastiani, P. and Kohane, I. S. (2002). Cluster analysis of gene expression dynamics. Proc. Natl. Acad. Sci. USA 99 9121-9126. · Zbl 1023.62110
[173] Ramsköld, D., Luo, S., Wang, Y.-C., Li, R., Deng, Q., Faridani, O. R., Daniels, G. A., Khrebtukova, I., Loring, J. F. et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30 777-782.
[174] Rau, A., Jaffrézic, F. and Nuel, G. (2013). Joint estimation of causal effects from observational and intervention gene expression data. BMC Syst. Biol. 7 Art. ID 111.
[175] Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M. and Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science 334 1518-1524. · Zbl 1359.62216
[176] Robinson, M. D. and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11 Art. ID R25.
[177] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 53-65. · Zbl 0636.62059
[178] Roy, S., Bhattacharyya, D. K. and Kalita, J. K. (2014). Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform. 15 Art. ID S10.
[179] Rudie, J. D., Brown, J. A., Beck-Pancer, D., Hernandez, L. M., Dennis, E. L., Thompson, P. M., Bookheimer, S. Y. and Dapretto, M. J. N. C. (2013). Altered functional and structural brain network organization in autism. NeuroImage Clin. 2 79-94.
[180] Ryali, S., Chen, T., Supekar, K. and Menon, V. (2012). Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. NeuroImage 59 3852-3861.
[181] Saliba, A.-E., Westermann, A. J., Gorski, S. A. and Vogel, J. (2014). Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Res. 42 8845-8860.
[182] Salvador, R., Suckling, J., Schwarzbauer, C. and Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos. Trans. R. Soc. B 360 937-946.
[183] Santos-Zavaleta, A., Salgado, H., Gama-Castro, S., Sánchez-Pérez, M., Gómez-Romero, L., Ledezma-Tejeida, D., García-Sotelo, J. S., Alquicira-Hernández, K., Muñiz-Rascado, L. J. et al. (2018). RegulonDB v 10.5: Tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 47 D212-D220.
[184] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. and Regev, A. (2015). Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33 495-502.
[185] Satuluri, V., Parthasarathy, S. and Ucar, D. (2010). Markov clustering of protein interaction networks with improved balance and scalability. In Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology 247-256. ACM, New York.
[186] Schiffman, C., Lin, C., Shi, F., Chen, L., Sohn, L. and Huang, H. (2017). SIDEseq: A cell similarity measure defined by shared identified differentially expressed genes for single-cell RNA sequencing data. Stat. Biosci. 9 200-216.
[187] Schuldiner, M., Collins, S. R., Thompson, N. J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C. et al. (2005). Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123 507-519.
[188] Setty, M., Tadmor, M. D., Reich-Zeliger, S., Angel, O., Salame, T. M., Kathail, P., Choi, K., Bendall, S., Friedman, N. et al. (2016). Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34 637-645.
[189] Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148 458-472.
[190] Shapiro, E., Biezuner, T. and Linnarsson, S. (2013). Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14 618-630.
[191] Sharan, R., Maron-Katz, A. and Shamir, R. (2003). CLICK and EXPANDER: A system for clustering and visualizing gene expression data. Bioinformatics 19 1787-1799.
[192] Shi, F. and Huang, H. (2017). Identifying cell subpopulations and their genetic drivers from single-cell RNA-Seq data using a biclustering approach. J. Comput. Biol. 24 663-674.
[193] Shin, J., Berg, D. A., Zhu, Y., Shin, J. Y., Song, J., Bonaguidi, M. A., Enikolopov, G., Nauen, D. W., Christian, K. M. et al. (2015). Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17 360-372.
[194] Smet, R. D. and Marchal, K. (2010). Advantages and limitations of current network inference methods. Nat. Rev., Microbiol. 8 717-729.
[195] Smith, T., Heger, A. and Sudbery, I. (2017). UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27 491-499.
[196] Solo, V., Poline, J.-B., Lindquist, M. A., Simpson, S. L., Bowman, F. D., Chung, M. K. and Cassidy, B. (2018). Connectivity in fMRI: Blind spots and breakthroughs. IEEE Trans. Med. Imag. 37 1537-1550.
[197] Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9 3273-3297.
[198] Srivastava, A., Malik, L., Smith, T., Sudbery, I. and Patro, R. (2019). Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20 Art. ID 65.
[199] Stegle, O., Teichmann, S. A. and Marioni, J. C. (2015). Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16 133-145.
[200] Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B. Z., Mauck, W. M., Smibert, P. and Satija, R. (2018). Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19 Art. ID 224.
[201] Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., Purdom, E. and Dudoit, S. (2018). Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19 Art. ID 477.
[202] Stuart, J. M., Segal, E., Koller, D. and Kim, S. K. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science 302 249-255.
[203] Sun, W. W. and Li, L. (2017). STORE: Sparse tensor response regression and neuroimaging analysis. J. Mach. Learn. Res. 18 Art. ID 135. · Zbl 1442.62773
[204] Sun, W. W. and Li, L. (2019). Dynamic tensor clustering. J. Amer. Statist. Assoc. 114 1894-1907. · Zbl 1428.62260
[205] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. and Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96 2907-2912.
[206] Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B. B. et al. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6 377-382.
[207] Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. and Church, G. M. (1999). Systematic determination of genetic network architecture. Nat. Genet. 22 281-285.
[208] Teschendorff, A. E., Wang, Y., Barbosa-Morais, N. L., Brenton, J. D. and Caldas, C. (2005). A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data. Bioinformatics 21 3025-3033.
[209] Tian, T. and Burrage, K. (2006). Stochastic models for regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci. USA 103 8372-8377.
[210] Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 411-423. · Zbl 0979.62046
[211] Tomasi, D. and Volkow, N. D. (2012). Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry 71 443-450.
[212] Tong, A. H. Y., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G. F., Brost, R. L. et al. (2004). Global mapping of the yeast genetic interaction network. Science 303 808-813.
[213] Tranchevent, L.-C., Ardeshirdavani, A., ElShal, S., Alcaide, D., Aerts, J., Auboeuf, D. and Moreau, Y. (2016). Candidate gene prioritization with Endeavour. Nucleic Acids Res. 44 W117-W121.
[214] Tranchevent, L.-C., Barriot, R., Yu, S. and Vooren, S. V. (2006). Gene prioritization through genomic data fusion. Nat. Biotechnol. 24 537-544.
[215] Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak, K. J., Mikkelsen, T. S. et al. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32 381-386.
[216] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N. et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15 273-289.
[217] Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. and Marioni, J. C. (2017). Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat. Methods 14 565-571.
[218] Van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., Burdziak, C., Moon, K. R., Chaffer, C. L. et al. (2018). Recovering gene interactions from single-cell data using data diffusion. Cell 174 716-729.
[219] Van Dongen, S. M. (2000). Graph clustering by flow simulation. Ph.D. thesis.
[220] Varoquaux, G. and Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. NeuroImage 80 405-415.
[221] Vinh, N. X., Chetty, M., Coppel, R. and Wangikar, P. P. (2011). GlobalMIT: Learning globally optimal dynamic Bayesian network with the mutual information test criterion. Bioinformatics 27 2765-2766.
[222] Vlasblom, J. and Wodak, S. J. (2009). Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinform. 10 Art. ID 99.
[223] Wachi, S., Yoneda, K. and Wu, R. (2005). Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21 4205-4208.
[224] Wang, Y., Hu, L. and Ombao, H. (2016). Statistical analysis of electroencephalograms. In Handbook of Neuroimaging Data Analysis (H. Ombao, M. Linquist, W. Thompson and J. Aston, eds.) 523-565. Chapman & Hall/CRC, Boca Raton, FL.
[225] Wang, Y., Joshi, T., Zhang, X.-S., Xu, D. and Chen, L. (2006). Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22 2413-2420.
[226] Wang, Y., Kang, J., Kemmer, P. B. and Guo, Y. (2016). An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation. Front. Neurosci. 10 Art. ID 123.
[227] Wang, Y., Zhang, X.-S. and Xia, Y. (2009). Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res. 37 5943-5958.
[228] Wang, Y. R. and Huang, H. (2014). Review on statistical methods for gene network reconstruction using expression data. J. Theoret. Biol. 362 53-61. · Zbl 1307.92099
[229] Wang, Y. R., Liu, K., Theusch, E., Rotter, J. I., Medina, M. W., Waterman, M. S. and Huang, H. (2017). Generalized correlation measure using count statistics for gene expression data with ordered samples. Bioinformatics 34 617-624.
[230] Wang, Y. R., Waterman, M. S. and Huang, H. (2014). Gene coexpression measures in large heterogeneous samples using count statistics. Proc. Natl. Acad. Sci. USA 111 16371-16376.
[231] Wang, Y. X. R., Jiang, K., Feldman, L. J., Bickel, P. J. and Huang, H. (2015). Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis. Ann. Appl. Stat. 9 300-323. · Zbl 1454.62416
[232] Wang, Y. X. R., Sarkar, P., Ursu, O., Kundaje, A. and Bickel, P. J. (2019). Network modelling of topological domains using Hi-C data. Ann. Appl. Stat. 13 1511-1536. · Zbl 1433.62318
[233] Wernicke, S. (2006). Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol. Bioinform. 3 347-359.
[234] Wille, A. and Bühlmann, P. (2006). Low-order conditional independence graphs for inferring genetic networks. Stat. Appl. Genet. Mol. Biol. 5 Art. ID 1. · Zbl 1166.62374
[235] Wille, A., Zimmermann, P., Vranová, E., Fürholz, A., Laule, O., Bleuler, S., Hennig, L., Prelic, A., von Rohr, P. et al. (2004). Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol. 5 Art. ID R92.
[236] Wolfe, C. J., Kohane, I. S. and Butte, A. J. (2005). Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinform. 6 Art. ID 227.
[237] Wong, A. K., Krishnan, A. and Troyanskaya, O. G. (2018). GIANT 2.0: Genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Res. 46 W65-W70.
[238] Wong, E., Baur, B., Quader, S. and Huang, C.-H. (2011). Biological network motif detection: Principles and practice. Brief. Bioinform. 13 202-215.
[239] Wong, R. K. W., Lee, T. C. M., Paul, D., Peng, J. and Alzheimer’s Disease Neuroimaging Initiative (2016). Fiber direction estimation, smoothing and tracking in diffusion MRI. Ann. Appl. Stat. 10 1137-1156. · Zbl 1391.62257
[240] Wu, Z., Zhang, Y., Stitzel, M. L. and Wu, H. (2018). Two-phase differential expression analysis for single cell RNA-seq. Bioinformatics 34 3340-3348.
[241] Xia, Y. and Li, L. (2017). Hypothesis testing of matrix graph model with application to brain connectivity analysis. Biometrics 73 780-791.
[242] Xia, Y. and Li, L. (2019). Matrix graph hypothesis testing and application in brain connectivity alternation detection. Statist. Sinica 29 303-328. · Zbl 1412.62187
[243] Xiong, Q., Ancona, N., Hauser, E. R., Mukherjee, S. and Furey, T. S. (2012). Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res. 22 386-397.
[244] Xu, C. and Su, Z. (2015). Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31 1974-1980.
[245] Xu, J. and Li, Y. (2006). Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22 2800-2805.
[246] Xu, Y. and Lindquist, M. A. (2015). Dynamic connectivity detection: An algorithm for determining functional connectivity change points in fMRI data. Front. Neurosci. 9 Art. ID 285.
[247] Yan, K.-K., Lou, S. and Gerstein, M. (2017). MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions. PLoS Comput. Biol. 13 Art. ID e1005647.
[248] Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. and Ruzzo, W. L. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics 17 977-987.
[249] Yu, H., Kim, P. M., Sprecher, E., Trifonov, V. and Gerstein, M. (2007). The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3 Art. ID e59.
[250] Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. and Jarvis, E. D. (2002). Using Bayesian network inference algorithms to recover molecular genetic regulatory networks. In International Conference on Systems Biology 2002.
[251] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94 19-35. · Zbl 1142.62408
[252] Yuan, Y., Chen, Y.-P. P., Ni, S., Xu, A. G., Tang, L., Vingron, M., Somel, M. and Khaitovich, P. (2011). Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series. BMC Bioinform. 12 Art. ID 347.
[253] Zhang, B., Li, H., Riggins, R. B., Zhan, M., Xuan, J., Zhang, Z., Hoffman, E. P., Clarke, R. and Wang, Y. (2008). Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 25 526-532.
[254] Zhang, L. and Zhang, S. (2018). Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform. 17 376-389.
[255] Zhang, T., Wu, J., Li, F., Caffo, B. and Boatman-Reich, D. (2015). A dynamic directional model for effective brain connectivity using electrocorticographic (ECoG) time series. J. Amer. Statist. Assoc. 110 93-106. · Zbl 1374.92101
[256] Zhang, Z., Descoteaux, M., Zhang, J., Girard, G., Chamberland, M., Dunson, D., Srivastava, A. and Zhu, H. (2018). Mapping population-based structural connectomes. NeuroImage 172 130-145.
[257] Zhao, F., McCarrick-Walmsley, R., Åkerblad, P., Sigvardsson, M. and Kadesch, T. (2003). Inhibition of p300/CBP by early B-cell factor. Mol. Cell. Biol. 23 3837-3846.
[258] Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo, S. B., Wheeler, T. D., McDermott, G. P. et al. (2017). Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8 Art. ID 14049.
[259] Zhou, S., Rütimann, P., Xu, M. and Bühlmann, P. (2011). High-dimensional covariance estimation based on Gaussian graphical models. J. Mach. Learn. Res. 12 2975-3026. · Zbl 1280.62065
[260] Zhu, H., Chen, Y., Ibrahim, J. G., Li, Y., Hall, C. and Lin, W. (2009). Intrinsic regression models for positive-definite matrices with applications to diffusion tensor imaging. J. Amer. Statist. Assoc. 104 1203-1212. · Zbl 1388.62198
[261] Zhu, J., Chen, Y., Leonardson, A. S., Wang, K., Lamb, J. R., Emilsson, V. and Schadt, E. E. (2010). Characterizing dynamic changes in the human blood transcriptional network. PLoS Comput. Biol. 6 Art. ID e1000671.
[262] Zhu, Y. and Li, L. (2018). Multiple matrix Gaussian graphs estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 927-950. · Zbl 1407.62214
[263] Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., Leonhardt, H., Heyn, H., Hellmann, I. et al. (2017). Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65 631-643.
[264] Zotenko, E., Mestre, J., O’Leary, D. P. and Przytycka, T. M. (2008). Why do hubs in the yeast protein interaction network tend to be essential: Reexamining the connection between the network topology and essentiality. PLoS Comput. Biol. 4 Art. ID e1000140.
[265] Zou, M. and Conzen, S. D. (2004). A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 71-79
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.