×

Bayesian regression with undirected network predictors with an application to brain connectome data. (English) Zbl 1464.62434

Summary: This article focuses on the relationship between a measure of creativity and the human brain network for subjects in a brain connectome dataset obtained using a diffusion weighted magnetic resonance imaging procedure. We identify brain regions and interconnections that have a significant effect on creativity. Brain networks are often expressed in terms of symmetric adjacency matrices, with row and column indices of the matrix representing the regions of interest (ROI), and a cell entry signifying the estimated number of fiber bundles connecting the corresponding row and column ROIs. Current statistical practices for regression analysis with the brain network as the predictor and the measure of creativity as the response typically vectorize the network predictor matrices prior to any analysis, thus failing to account for the important structural information in the network. This results in poor inferential and predictive performance in presence of small sample sizes. To answer the scientific questions discussed above, we develop a flexible Bayesian framework that avoids reshaping the network predictor matrix, draws inference on brain ROIs and interconnections significantly related to creativity, and enables accurate prediction of creativity from a brain network. A novel class of network shrinkage priors for the coefficient corresponding to the network predictor is proposed to achieve these goals simultaneously. The Bayesian framework allows characterization of uncertainty in the findings. Empirical results in simulation studies illustrate substantial inferential and predictive gains of the proposed framework in comparison with the ordinary high-dimensional Bayesian shrinkage priors and penalized optimization schemes. Our framework yields new insights into the relationship of brain regions with creativity, also providing the uncertainty associated with the scientific findings.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
62M45 Neural nets and related approaches to inference from stochastic processes

Software:

glmnet; Monomvn; BayesDA
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Albert, J. H.; Chib, S., “Bayesian Analysis of Binary and Polychotomous Response Data, Journal of the American Statistical Association, 88, 669-679 (1993) · Zbl 0774.62031
[2] Arroyo Relión, J. D.; Kessler, D.; Levina, E.; Taylor, S. F., “Network Classification With Applications to Brain Connectomics, The Annals of Applied Statistics, 13, 1648-1677 (2019) · Zbl 1433.62314
[3] Bullmore, E.; Sporns, O., “Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems, Nature Reviews Neuroscience, 10, 186-198 (2009)
[4] Carvalho, C. M.; Polson, N. G.; Scott, J. G., “The Horseshoe Estimator for Sparse Signals, Biometrika, 97, 465-480 (2010) · Zbl 1406.62021
[5] Chatterjee, A.; Lahiri, S. N., “Bootstrapping Lasso Estimators, Journal of the American Statistical Association, 106, 608-625 (2011) · Zbl 1232.62088
[6] Craddock, R. C.; Holtzheimer, P. E.; Hu, X. P.; Mayberg, H. S., “Disease State Prediction From Resting State Functional Connectivity, Magnetic Resonance in Medicine, 62, 1619-1628 (2009)
[7] De la Haye, K.; Robins, G.; Mohr, P.; Wilson, C., “Obesity-Related Behaviors in Adolescent Friendship Networks, Social Networks, 32, 161-167 (2010)
[8] Desikan, R. S.; Ségonne, F.; Fischl, B.; Quinn, B. T.; Dickerson, B. C.; Blacker, D.; Buckner, R. L.; Dale, A. M.; Maguire, R. P.; Hyman, B. T.; Albert, M. S., “An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans Into Gyral Based Regions of Interest, Neuroimage, 31, 968-980 (2006)
[9] Durante, D.; Dunson, D. B., “Bayesian Inference and Testing of Group Differences in Brain Networks, Bayesian Analysis, 13, 29-58 (2017) · Zbl 06873717
[10] Fan, J.; Gong, W.; Zhu, Z., “Generalized High-Dimensional Trace Regression via Nuclear Norm Regularization, Journal of Econometrics, 212, 177-202 (2019) · Zbl 1452.62536
[11] Finkelstein, Y.; Vardi, J.; Hod, I., “Impulsive Artistic Creativity as a Presentation of Transient Cognitive Alterations, Behavioral Medicine, 17, 91-94 (1991)
[12] Flaherty, A. W., “Frontotemporal and Dopaminergic Control of Idea Generation and Creative Drive, Journal of Comparative Neurology, 493, 147-153 (2005)
[13] Fornito, A.; Zalesky, A.; Breakspear, M., “Graph Analysis of the Human Connectome: Promise, Progress, and Pitfalls, Neuroimage, 80, 426-444 (2013)
[14] Fosdick, B. K.; Hoff, P. D., “Testing and Modeling Dependencies Between a Network and Nodal Attributes, Journal of the American Statistical Association, 110, 1047-1056 (2015) · Zbl 1373.62273
[15] Fowler, J. H.; Christakis, N. A., “Dynamic Spread of Happiness in a Large Social Network: Longitudinal Analysis Over 20 Years in the Framingham Heart Study, British Medical Journal, 337, a2338 (2008)
[16] Frank, O.; Strauss, D., “Markov Graphs, Journal of the American Statistical Association, 81, 832-842 (1986) · Zbl 0607.05057
[17] Friedman, J.; Hastie, T.; Tibshirani, R., “Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of Statistical Software, 33, 1 (2010)
[18] Gelman, A.; Carlin, J. B.; Stern, H. S.; Dunson, D. B.; Vehtari, A.; Rubin, D. B., Bayesian Data Analysis, 2 (2014), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1279.62004
[19] Gramacy, R. B. (2013), “R Package monomvn.”
[20] Guhaniyogi, R.; Qamar, S.; Dunson, D. B., “Bayesian Tensor Regression, Journal of Machine Learning Research, 18, 2733-2763 (2017)
[21] Guhaniyogi, R.; Rodriguez, A., “Joint Modeling of Longitudinal Relational Data and Exogenous Variables, Bayesian Analysis, 15, 477-503 (2018) · Zbl 1459.62219
[22] Hagmann, P.; Jonasson, L.; Maeder, P.; Thiran, J.-P.; Wedeen, V. J.; Meuli, R., “Understanding Diffusion MR Imaging Techniques: From Scalar Diffusion-Weighted Imaging to Diffusion Tensor Imaging and Beyond, Radiographics, 26, S205-S223 (2006)
[23] Harville, D. A., “Matrix Algebra From a Statistician’s Perspective, Technometrics, 40, 164 (1998)
[24] Hoff, P. D., “Bilinear Mixed-Effects Models for Dyadic Data, Journal of the American Statistical Association, 100, 286-295 (2005) · Zbl 1117.62353
[25] Hoff, P. D.; Raftery, A. E.; Handcock, M. S., “Latent Space Approaches to Social Network Analysis, Journal of the American Statistical Association, 97, 1090-1098 (2002) · Zbl 1041.62098
[26] Ishwaran, H.; Rao, J. S., “Spike and Slab Variable Selection: Frequentist and Bayesian Strategies, Annals of Statistics, 33, 730-773 (2005) · Zbl 1068.62079
[27] Jbabdi, S.; Sotiropoulos, S. N.; Haber, S. N.; Van Essen, D. C.; Behrens, T. E., “Measuring Macroscopic Brain Connections In Vivo, Nature Neuroscience, 18, 1546 (2015)
[28] Johnson, V. E.; Rossell, D., “Bayesian Model Selection in High-Dimensional Settings, Journal of the American Statistical Association, 107, 649-660 (2012) · Zbl 1261.62024
[29] Jung, R. E.; Segall, J. M.; Jeremy Bockholt, H.; Flores, R. A.; Smith, S. M.; Chavez, R. S.; Haier, R. J., “Neuroanatomy of Creativity, Human Brain Mapping, 31, 398-409 (2010)
[30] Kiar, G., Gray Roncal, W., Mhembere, D., Bridgeford, E., Burns, R., and Vogelstein, J. (2016), “ndmg: Neurodata’s MRI Graphs Pipeline.”
[31] Kolb, B.; Milner, B., “Performance of Complex Arm and Facial Movements After Focal Brain Lesions, Neuropsychologia, 19, 491-503 (1981)
[32] Kyung, M.; Gill, J.; Ghosh, M.; Casella, G., “Penalized Regression, Standard Errors, and Bayesian Lassos, Bayesian Analysis, 5, 369-411 (2010) · Zbl 1330.62289
[33] Leng, C.; Lin, Y.; Wahba, G., “A Note on the Lasso and Related Procedures in Model Selection, Statistica Sinica, 16, 1273 (2006) · Zbl 1214.62060
[34] Li, H.; Pati, D., “Variable Selection Using Shrinkage Priors, Computational Statistics & Data Analysis, 107, 107-119 (2017) · Zbl 1466.62135
[35] Li, Y.; Qin, Y.; Chen, X.; Li, W., “Exploring the Functional Brain Network of Alzheimer’s Disease: Based on the Computational Experiment, PLoS One, 8, e73186 (2013)
[36] Meinshausen, N.; Bühlmann, P., “Stability Selection, Journal of the Royal Statistical Society, Series B, 72, 417-473 (2010) · Zbl 1411.62142
[37] Miller, L.; Milner, B., “Cognitive Risk-Taking After Frontal or Temporal Lobectomy-II. The Synthesis of Phonemic and Semantic Information, Neuropsychologia, 23, 371-379 (1985)
[38] Nowicki, K.; Snijders, T. A. B., “Estimation and Prediction for Stochastic Block Structures, Journal of the American Statistical Association, 96, 1077-1087 (2001) · Zbl 1072.62542
[39] Park, H.-J.; Friston, K., “Structural and Functional Brain Networks: From Connections to Cognition, Science, 342, 1238411 (2013)
[40] Park, T.; Casella, G., “The Bayesian Lasso, Journal of the American Statistical Association, 103, 681-686 (2008) · Zbl 1330.62292
[41] Polson, N. G.; Scott, J. G., “Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction,”, Bayesian Statistics, 9, 501-538 (2010)
[42] Raskutti, G.; Yuan, M.; Chen, H., “Convex Regularization for High-Dimensional Multiresponse Tensor Regression, The Annals of Statistics, 47, 1554-1584 (2019) · Zbl 1428.62324
[43] Razumnikova, O. M., “Creativity Related Cortex Activity in the Remote Associates Task, Brain Research Bulletin, 73, 96-102 (2007)
[44] Richiardi, J.; Eryilmaz, H.; Schwartz, S.; Vuilleumier, P.; Van De Ville, D., “Decoding Brain States From fMRI Connectivity Graphs, Neuroimage, 56, 616-626 (2011)
[45] Shoham, D. A.; Hammond, R.; Rahmandad, H.; Wang, Y.; Hovmand, P., “Modeling Social Norms and Social Influence in Obesity, Current Epidemiology Reports, 2, 71-79 (2015)
[46] Sibson, R., “Studies in the Robustness of Multidimensional Scaling: Procrustes Statistics, Journal of the Royal Statistical Society, Series B, 40, 234-238 (1978) · Zbl 0389.62086
[47] Stuss, D.; Ely, P.; Hugenholtz, H.; Richard, M.; LaRochelle, S.; Poirier, C.; Bell, I., “Subtle Neuropsychological Deficits in Patients With Good Recovery After Closed Head Injury,”, Neurosurgery, 17, 41-47 (1985)
[48] Teh, Y. W.; Grür, D.; Ghahramani, Z., Stick-Breaking Construction for the Indian Buffet Process, Artificial Intelligence and Statistics, 556-563 (2007)
[49] Tibshirani, R., “Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, Series B, 58, 267-288 (1996) · Zbl 0850.62538
[50] Young, S. J.; Scheinerman, E. R., International Workshop on Algorithms and Models for the Web-Graph, “Random Dot Product Graph Models for Social Networks,”, 138-149 (2007), Springer · Zbl 1136.05322
[51] Zhang, Z.; Descoteaux, M.; Dunson, D. B., “Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions, Journal of the American Statistical Association, 114, 1505-1517 (2019) · Zbl 1428.62485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.