×

Résonances dans l’approximation de Born-Oppenheimer. I. (Resonances in Born-Oppenheimer approximation. I). (French) Zbl 0737.35046

Summary: We study the operator \(P=-h^ 2\Delta_ x-\Delta_ y+V(x,y)\) on \(\mathbb{R}^ n_ x\times\mathbb{R}^ p_ y\) when \(h\) tends to zero, in a case where resonances appear. Using the so-called Feshbach method, the study of \(P\) is first reduced to that of a matrix operator on \(L^ 2(\mathbb{R}^ n_ x)\), with principal part \(\hbox{diag}(-h^ 2\Delta+\lambda_ j(x))\) where the \(\lambda_ j\text{'s}\) are the eigenvalues of \(- \lambda_ y+V(x,y)\) on \(L^ 2(\mathbb{R}^ p_ y)\). Under the assumption that \(\lambda_ 2\) admits a non degenerate point well (and additional conditions on \(\lambda_ 1\)), it is then showed that \(P\) has resonances with a real asymptotic expansion in \(h^{1/2}\), close to the eigenvalues of \(-h^ 2\Delta+\lambda_ 2(x)\).
[Part II, see the following review.].

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation

Citations:

Zbl 0737.35047
Full Text: DOI

References:

[1] Aguilar, J.; Combes, J. M., A class of analytic perturbations for one-body Schrödinger hamiltonians, Comm. Math. Phys., 22, 269-279 (1971) · Zbl 0219.47011
[2] Aventini, P.; Seiler, R., On the electronic spectrum of the diatomic molecular ion, Comm. Math. Phys., 41, 119-134 (1975)
[3] Balazard-Konlein, A., (Calcul fonctionnel pour des opérateurs \(h\)-admissibles à symbole opérateurs et applications. Calcul fonctionnel pour des opérateurs \(h\)-admissibles à symbole opérateurs et applications, Thèse de 3ème cycle (1985), Université de Nantes)
[4] Balslev, E.; Combes, J. M., Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., 22, 280-294 (1971) · Zbl 0219.47005
[5] Born, M.; Oppenheimer, R., Zur Quantentheorie der Molekeln, Ann. Physik, 84, 457 (1927) · JFM 53.0845.04
[6] Briet, P.; Combes, J.-M; Duclos, P., On the location of resonances for Schrödinger operators in the semiclassical limit II, Comm. Partial Differential Equations, 12, 2, 201-222 (1987) · Zbl 0622.47047
[7] Combes, J.-M, On the Born-Oppenheimer approximation, (Araki, H., Int. Symposium on Math. Prob. and Theor. Physics (1975), Springer Pub: Springer Pub New York), 467 · Zbl 0372.47026
[8] Combes, J.-M, The Born-Oppenheimer approximation, (Thirring, W.; Urban, P., The Schrödinger Equation (1977), Springer Pub: Springer Pub New York), 139-159 · Zbl 0372.47026
[9] Combes, J.-M; Duclos, P.; Seiler, R., The Born-Oppenheimer approximation, (Velo, G.; Wightman, A., Rigorous Atomic and Molecular Physics (1981), Plenum: Plenum New York), 185-212
[10] Combes, J.-M; Seiler, R., Regularity and asymptotic properties of the discrete spectrum of electronic hamiltonians, Int. J. Quantum Chem., XIV, 213-229 (1978)
[11] Feshbach, H., Unified theory of nuclear reactions II, Ann. Physics, 19, 287 (1962) · Zbl 0116.23202
[12] Hagedorn, G. A., High order corrections to the time-independant Born-Oppenheimer approximation I: Smooth potentials, Ann. Inst. H. Poincaré Sect. A, 47, 1-19 (1987) · Zbl 0621.41012
[13] Hagedorn, G. A., High order corrections to the time-independant Born-Oppenheimer approximation II: Diatomic Coulomb systems, Comm. Math. Phys., 116, 23-44 (1988)
[14] Helffer, B.; Martinez, A., Comparaison entre les diverses notions de résonances, Helv. Phys. Acta, 60, 992-1003 (1987)
[15] Helffer, B.; Sjöstrand, J., Multiple wells in the semiclassical limit I, Comm. Partial Differential Equations, 9, 4, 337-408 (1984) · Zbl 0546.35053
[16] Helffer, B.; Sjöstrand, J., Résonances en limite semi-classique, (Bull. Soc. Math. France, 114 (1986)), 25, Mémoire n∘ 24 · Zbl 0631.35075
[17] Klein, M., On the mathematical theory of predissociation, Ann. Physics, 178, N∘ 1, 48-73 (1987) · Zbl 0649.35024
[19] Landau, L.; Lifchitz, E., Mécanique quantique, théorie non relativiste, (Mir (1966), Mir: Mir Moscou) · Zbl 0144.47605
[20] Martinez, A., Développements asymptotiques et effet tunnel dans l’approximation de Born-Oppenheimer, Ann. Inst. H. Poincaré Sect. A, 49, n∘ 3, 239-257 (1989) · Zbl 0689.35063
[21] Martinez, A., Développements asymptotiques dans l’approximation de Born-Oppenheimer, Journées EDP de St. Jean-de-Monts (1988) · Zbl 0699.35209
[22] Martinez, A., Résonances dans l’approximation de Born-Oppenheimer II—Largeur des résonances, Comm. Math. Phys., 135, 517-530 (1991) · Zbl 0737.35047
[23] Reed, M.; Simon, B., (Methods of modem mathematical physics, t. I (1978), Academic Press: Academic Press New York), à IV · Zbl 0401.47001
[24] Seiler, R., Does the Born-Oppenheimer approximation work, Helv. Phys. Acta, 46, 230-234 (1973)
[25] Simon, B., Semiclassical limit of low lying eigenvalues I—Non degenerate minima: Asymptotic expansions, Ann. de L’IHP, 38, n∘ 3, 295-307 (1983) · Zbl 0526.35027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.