Van der Schaft, A. J. On a state space approach to nonlinear \(H_ \infty\) control. (English) Zbl 0737.93018 Syst. Control Lett. 16, No. 1, 1-8 (1991). Summary: We study the standard \(H_ \infty\) optimal control problem using state feedback for smooth nonlinear control systems. The main theorem obtained roughly states that the \(L_ 2\)-induced norm (from disturbances to inputs and outputs) can be made smaller than a constant \(\gamma >0\) if the corresponding \(H_ \infty\) norm for the system linearized at the equilibrium can be made smaller than \(\gamma\) by linear state feedback. Necessary and sufficient conditions for the latter problem are by now well-known e.g. from the state space approach to linear \(H_ \infty\) optimal control. Our approach to the nonlinear \(H_ \infty\) optimal control problem generalizes the state space approach to the linear \(H_ \infty\) problem by replacing the Hamiltonian matrix and corresponding Riccati equation as used in the linear context by a Hamiltonian vector field together with a Hamilton-Jacobi equation corresponding to its stable invariant manifold. Cited in 79 Documents MSC: 93B36 \(H^\infty\)-control 93C10 Nonlinear systems in control theory 49L99 Hamilton-Jacobi theories 37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems Keywords:\(H_ \infty\) optimal control problem; Hamiltonian matrix; Hamilton- Jacobi equation × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Abraham, R. A.; Marsden, J. E., Foundations of Mechanics (1978), Benjamin/Cummings: Benjamin/Cummings Reading, MA · Zbl 0393.70001 [2] Anderson, B. D.O., An algebraic solution to the spectral factorization problem, IEEE Trans. Automat. Control, 12, 410-414 (1967) [3] Ball, J. A.; Helton, J. W., Factorization of nonlinear systems: Towards a theory for nonlinear ((H^∞\) control, (27th IEEE CDC. 27th IEEE CDC, Austin, TX (1988)), 2376-2381 [4] Ball, J. A.; Helton, J. W., ((H^∞\) control for nonlinear plants: connections with differential games, (28th IEEE CDC. 28th IEEE CDC, Tampa, FL (1989)), 956-962 [5] Boyd, B.; Balakrishnan, V.; Kabamba, P., A bisection method for computing the \(H∞\) norm of a transfer matrix and related problems, Math. Control Signals and Systems, 2, 207-220 (1989) · Zbl 0674.93020 [6] Doyle, J. C.; Glover, K.; Khargonekar, P. P.; Francis, B. A., State-space solutions to standard \(H2\) and \(H∞\) control problems, IEEE Trans. Automat. Control, 34, 831-846 (1990) [7] Francis, B. A., A Course in \(H∞\) Control Theory, (LNCIS 88 (1987), Springer-Verlag: Springer-Verlag Berlin-New York) · Zbl 0624.93003 [8] Glover, K.; Doyle, J. C., A state space approach to \(H∞\) optimal control, (Nijmeijer, H.; Schumacher, J. M., Three Decades of Mathematical System Theory. Three Decades of Mathematical System Theory, LNCIS 135 (1989), Springer-Verlag: Springer-Verlag Berlin-New York), 179-218 · Zbl 0684.93025 [9] Hill, D. J.; Moylan, D. J., Connections between finite gain and asymptotic stability, IEEE Trans. Automat. Control, 25, 931-936 (1980) · Zbl 0453.93029 [10] Isidori, A., Nonlinear Control Systems (1989), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0714.93021 [11] Khargonekar, P. P.; Petersen, I. R.; Rotea, M. A., ((H^∞\) optical control with state feedback, IEEE Trans. Automat. Control, 33, 786-788 (1988) · Zbl 0655.93026 [12] Nijmeijer, H.; van der Schaft, A. J., Nonlinear Dynamical Control Systems (1990), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0701.93001 [13] Vidyasagar, M., Nonlinear Systems Analysis (1978), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0407.93037 [14] Vidyasagar, M.; Vanelli, A., New relationships between input-output and Lyapunov stability, IEEE Trans. Automat. Control, 27, 481-483 (1982) · Zbl 0479.93046 [15] Weiland, S., (Ph.D. Thesis (1990), University of Groningen), to appear [16] Willems, J. C., Least-squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Automat. Control, 16, 621-634 (1971) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.