Revival of oscillation and symmetry breaking in coupled quantum oscillators. (English) Zbl 1465.81015

Summary: Restoration of oscillations from an oscillation suppressed state in coupled oscillators is an important topic of research and has been studied widely in recent years. However, the same in the quantum regime has not been explored yet. Recent works established that under certain coupling conditions, coupled quantum oscillators are susceptible to suppression of oscillations, such as amplitude death and oscillation death. In this paper, for the first time, we demonstrate that quantum oscillation suppression states can be revoked and rhythmogenesis can be established in coupled quantum oscillators by controlling a feedback parameter in the coupling path. However, in sharp contrast to the classical system, we show that in the deep quantum regime, the feedback parameter fails to revive oscillations, and rather results in a transition from a quantum amplitude death state to the recently discovered quantum oscillation death state. We use the formalism of an open quantum system and a phase space representation of quantum mechanics to establish our results. Therefore, our study establishes that the revival scheme proposed for classical systems does not always result in restoration of oscillations in quantum systems, but in the deep quantum regime, it may give counterintuitive behaviors that are of a pure quantum mechanical origin.
©2021 American Institute of Physics


81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R40 Symmetry breaking in quantum theory
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI arXiv


[1] Lee, T. E.; Sadeghpour, H. R., Quantum synchronization of quantum van der Pol oscillators with trapped ions, Phys. Rev. Lett., 111, 234101 (2013)
[2] Walter, S.; Nunnenkamp, A.; Bruder, C., Quantum synchronization of a driven self-sustained oscillator, Phys. Rev. Lett., 112, 094102 (2014)
[3] Laskar, A. W.; Adhikary, P.; Mondal, S.; Katiyar, P.; Vinjanampathy, S.; Ghosh, S., Observation of quantum phase synchronization in spin-1 atoms, Phys. Rev. Lett., 125, 013601 (2020)
[4] Koppenhöfer, M.; Bruder, C.; Roulet, A., Quantum synchronization on the IBM Q system, Phys. Rev. Res., 2, 023026 (2020)
[5] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2003), Cambridge University Press: Cambridge University Press, Cambridge, England · Zbl 1219.37002
[6] Carmichael, H. J., Statistical Methods in Quantum Optics 1 (1999), Springer · Zbl 0918.60095
[7] Weinbub, J.; Ferry, D. K., Recent advances in Wigner function approaches, Appl. Phys. Rev., 5, 041104 (2018)
[8] Lee, T. E.; Chan, C.-K.; Wang, S., Entanglement tongue and quantum synchronization of disordered oscillators, Phys. Rev. E, 89, 022913 (2014)
[9] Walter, S.; Nunnenkamp, A.; Bruder, C., Quantum synchronization of two van der Pol oscillators, Ann. Phys., 527, 131 (2015) · Zbl 1312.81148
[10] Lörch, N.; Nigg, S. E.; Nunnenkamp, A.; Tiwari, R. P.; Bruder, C., Quantum synchronization blockade: Energy quantization hinders synchronization of identical oscillators, Phys. Rev. Lett., 118, 243602 (2017)
[11] Morgan, L.; Hinrichsen, H., Oscillation and synchronization of two quantum self-sustained oscillators, J. Stat. Mech., 28, P09009 (2015) · Zbl 1456.81211
[12] Sonar, S.; Hajdušek, M.; Mukherjee, M.; Fazio, R.; Vedral, V.; Vinjanampathy, S.; Kwek, L., Squeezing enhances quantum synchronization, Phys. Rev. Lett., 120, 163601 (2018)
[13] Mok, W.-K.; Kwek, L.-C.; Heimonen, H., Synchronization boost with single-photon dissipation in the deep quantum regime, Phys. Rev. Res., 2, 033422 (2020)
[14] Zakharova, A., Chimera Patterns in Networks (2020), Springer: Springer, Cham · Zbl 1451.93004
[15] Banerjee, T.; Biswas, D.; Ghosh, D.; Schöll, E.; Zakharova, A., Networks of coupled oscillators: From phase to amplitude chimeras, Chaos, 28, 113124 (2018) · Zbl 1403.34037
[16] Poel, W.; Zakharova, A.; Schöll, E., Partial synchronization and partial amplitude death in mesoscale network motifs, Phy. Rev. E, 91, 022915 (2015)
[17] Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T., Quantum signatures of chimera states, Phys. Rev. E, 92, 062924 (2015)
[18] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428 (1992)
[19] Droenner, L.; Naumann, N. L.; Schöll, E.; Knorr, A.; Carmele, A., Quantum pyragas control: Selective control of individual photon probabilities, Phys. Rev. A, 99, 023840 (2019)
[20] Kato, Y.; Nakao, H., Quantum coherence resonance, New J. Phys., 23, 043018 (2021)
[21] Ishibashi, K.; Kanamoto, R., Oscillation collapse in coupled quantum van der Pol oscillators, Phys. Rev. E, 96, 052210 (2017)
[22] Amitai, E.; Koppenhöfer, M.; Lörch, N.; Bruder, C., Quantum effects in amplitude death of coupled anharmonic self-oscillators, Phys. Rev. E, 97, 052203 (2018)
[23] Koseska, A.; Volkov, E.; Kurths, J., Oscillation quenching mechanisms: Amplitude vs oscillation death, Phys. Rep., 531, 173 (2013) · Zbl 1356.34043
[24] Koseska, A.; Volkov, E.; Kurths, J., Transition from amplitude to oscillation death via Turing bifurcation, Phys. Rev. Lett., 111, 024103 (2013)
[25] Bandyopadhyay, B.; Khatun, T.; Biswas, D.; Banerjee, T., Quantum manifestations of homogeneous and inhomogeneous oscillation suppression states, Phys. Rev. E, 102, 062205 (2020)
[26] Zou, W.; Senthilkumar, D. V.; Nagao, R.; Kiss, I. Z.; Tang, Y.; Koseska, A.; Duan, J.; Kurths, J., Restoration of rhythmicity in diffusively coupled dynamical networks, Nat. Commun., 6, 7709 (2015)
[27] Ghosh, D.; Banerjee, T.; Kurths, J., Revival of oscillation from mean-field-induced death: Theory and experiment, Phys. Rev. E, 92, 052908 (2015)
[28] Banerjee, T., Mean-field-diffusion-induced chimera death state, Europhys. Lett., 110, 60003 (2015)
[29] Banerjee, T.; Dutta, P. S.; Gupta, A., Mean-field dispersion-induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model, Phys. Rev. E, 91, 052919 (2015)
[30] van der Pol, B., On oscillation hysteresis in a triode generator with two degrees of freedom, Philos. Mag., 43, 700-719 (1922)
[31] Johansson, J.; Nation, P.; Nori, F., QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun., 184, 1234 (2013)
[32] Ullner, E.; Zaikin, A.; Volkov, E. I.; García-Ojalvo, J., Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication, Phys. Rev. Lett., 99, 148103 (2007)
[33] Banerjee, T.; Ghosh, D., Transition from amplitude to oscillation death under mean-field diffusive coupling, Phys. Rev. E, 89, 052912 (2014)
[34] Banerjee, T.; Ghosh, D., Experimental observation of a transition from amplitude to oscillation death in coupled oscillators, Phys. Rev. E, 89, 062902 (2014)
[35] Ansmann, G., Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE, Chaos, 28, 043116 (2018) · Zbl 1390.34005
[36] Zou, W.; Zhan, M.; Kurths, J., Revoking amplitude and oscillation deaths by low-pass filter in coupled oscillators, Phys. Rev. E, 95, 062206 (2017)
[37] Banerjee, T.; Biswas, D.; Ghosh, D.; Bandyopadhyay, B.; Kurths, J., Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators, Phys. Rev. E, 97, 042218 (2018)
[38] Zou, W.; Senthilkumar, D.; Zhan, M.; Kurths, J., Reviving oscillations in coupled nonlinear oscillators, Phys. Rev. Lett., 111, 014101 (2013)
[39] Biswas, D.; Banerjee, T., Time-Delayed Chaotic Dynamical Systems (2018), Springer International Publishing
[40] Bemani, F.; Motazedifard, A.; Roknizadeh, R.; Naderi, M. H.; Vitali, D., Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity, Phys. Rev. A, 96, 023805 (2017)
[41] Shim, S.-B.; Imboden, M.; Mohanty, P., Synchronized oscillation in coupled nanomechanical oscillators, Science, 316, 95 (2007)
[42] Jayich, A.; Sankey, J.; Zwickl, B.; Yang, C.; Thompson, J.; Girvin, S.; Clerk, A.; Marquardt, F.; Harris, J., Dispersive optomechanics: A membrane inside a cavity, New J. Phys., 8, 095008 (2008)
[43] Lloyd, S.; Braunstein, S. L., Quantum computation over continuous variables, Phys. Rev. Lett., 82, 1784-1787 (1999) · Zbl 0947.81015
[44] Goda, K.; Mikhailov, O. M. E. E.; Saraf, S.; Adhikari, R.; McKenzie, K.; Ward, R.; Vass, S.; Weinstein, A. J.; Mavalvala, N., A quantum-enhanced prototype gravitational-wave detector, Nat. Phys., 4, 472-476 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.