×

zbMATH — the first resource for mathematics

Efficient direct space-time finite element solvers for parabolic initial-boundary value problems In anisotropic Sobolev spaces. (English) Zbl 07379634

MSC:
65F05 Direct numerical methods for linear systems and matrix inversion
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Trans. Math. Softw., 45 (2019), pp. 1-26. · Zbl 1471.65025
[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15-41. · Zbl 0992.65018
[3] R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal., 33 (2013), pp. 242-260. · Zbl 1262.65114
[4] R. E. Bank, P. S. Vassilevski, and L. T. Zikatanov, Arbitrary dimension convection-diffusion schemes for space-time discretizations, J. Comput. Appl. Math., 310 (2017), pp. 19-31. · Zbl 1348.65139
[5] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of the matrix equation \(AX + XB = C\), Commun. ACM, 15 (1972), pp. 820-826. · Zbl 1372.65121
[6] M. Costabel, Boundary integral operators for the heat equation, Integral Equations Operator Theory, 13 (1990), pp. 498-552. · Zbl 0715.35032
[7] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, A survey of direct methods for sparse linear systems, Acta Numer., 25 (2016), pp. 383-566. · Zbl 1346.65011
[8] D. Devaud, Petrov-Galerkin space-time \(hp\)-approximation of parabolic equations in \(H^{1/2}\), IMA J. Numer. Anal., 40 (2020), pp. 2717-2745. · Zbl 1466.65126
[9] S. Dohr, O. Steinbach, and K. Niino, Space-time boundary element methods for the heat equation, in Space-Time Methods: Application to Partial Differential Equations, U. Langer and O. Steinbach, eds., Radon Ser. Comput. Appl. Math. 25, de Gruyter, Berlin, 2019, pp. 1-60. · Zbl 1453.65294
[10] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, 2nd ed., Oxford University Press, Oxford, 2017. · Zbl 1364.65067
[11] T. Führer and M. Karkulik, Space-time least-squares finite elements for parabolic equations, Comput. Math. Appl., 92 (2021), pp. 27-36. · Zbl 07351758
[12] M. Fontes, Parabolic Equations with Low Regularity, Ph.D. thesis, Lunds Universitet, 1996.
[13] M. Fontes, Initial-boundary value problems for parabolic equations, Ann. Acad. Sci. Fenn. Math., 34 (2009), pp. 583-605. · Zbl 1198.35137
[14] T. Führer, N. Heuer, and J. S. Gupta, A time-stepping DPG scheme for the heat equation, Comput. Methods Appl. Math., 17 (2017), pp. 237-252. · Zbl 1359.65200
[15] M. J. Gander, \(50\) years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds., Springer-Verlag, Berlin, 2015, pp. 69-114. · Zbl 1337.65127
[16] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, Solution of the Sylvester matrix equation \(AXB^T+CXD^T=E\), ACM Trans. Math. Softw., 18 (1992), pp. 223-231. · Zbl 0893.65026
[17] N. I. M. Gould, J. A. Scott, and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Trans. Math. Softw., 33 (2007), Article 10. · Zbl 1365.65129
[18] Y. Hardy and W.-H. Steeb, Matrix Calculus, Kronecker Product and Tensor Product: A Practical Approach to Linear Algebra, Multilinear Algebra and Tensor Calculus with Software Implementations, 3rd ed., World Scientific, Singapore, 2019. · Zbl 1411.15002
[19] C. Hofer, U. Langer, M. Neumüller, and R. Schneckenleitner, Parallel and robust preconditioning for space-time isogeometric analysis of parabolic evolution problems, SIAM J. Sci. Comput., 41 (2019), pp. A1793-A1821. · Zbl 1420.65022
[20] T. Hughes, L. Franca, and G. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advection-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), pp. 173-189. · Zbl 0697.76100
[21] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasi-Linear Equations of Parabolic Type, Vol. 23, American Mathematical Society, Providence, RI, 1968.
[22] U. Langer and M. Neumüller, Direct and iterative solvers, in Computational Acoustics, M. Kaltenbacher, ed., Springer-Verlag, Cham, Switzerland, 2018, pp. 205-251.
[23] S. Larsson and M. Molteni, Numerical solution of parabolic problems based on a weak space-time formulation, Comput. Methods Appl. Math., 17 (2017), pp. 65-84. · Zbl 1355.65133
[24] S. Larsson and C. Schwab, Compressive Space-Time Galerkin Discretizations of Parabolic Partial Differential Equations, preprint, arXiv:1501.04514, 2015.
[25] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968. · Zbl 0165.10801
[26] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, Paris, 1968. · Zbl 0165.10801
[27] J. W. H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Rev., 34 (1992), pp. 82-109. · Zbl 0919.65019
[28] G. Loli, M. Montardini, G. Sangalli, and M. Tani, Space-time Galerkin isogeometric method and efficient solver for parabolic problems, Comput. Math. Appl., 80 (2020), pp. 2586-2603. · Zbl 07283123
[29] R. Lynch, J. R. Rice, and D. H. Thomas, Direct solution of partial difference equations by tensor product methods, Numer. Math., 6 (1964), pp. 185-199. · Zbl 0126.12703
[30] P.-G. Martinsson, Fast Direct Solvers for Elliptic PDEs, Vol. 96, SIAM, Philadelphia, 2020. · Zbl 1447.65003
[31] C. Mollet, Stability of Petrov-Galerkin discretizations: Application to the space-time weak formulation for parabolic evolution problems, Comput. Methods Appl. Math., 14 (2014), pp. 231-255. · Zbl 1290.65086
[32] M. Neumüller, Space-Time Methods: Fast Solvers and Applications, Monographic Series TU Graz: Computation in Engineering and Science 20, Verlag der Technischen Universität Graz, Graz, Austria, 2013.
[33] M. Neumüller and I. Smears, Time-parallel iterative solvers for parabolic evolution equations, SIAM J. Sci. Comput., 41 (2019), pp. C28-C51. · Zbl 1450.65106
[34] D. Pardo, M. Paszynski, N. Collier, J. Alvarez, L. Dalcin, and V. M. Calo, A survey on direct solvers for Galerkin methods, SeMA J., 57 (2012), pp. 107-134. · Zbl 1311.65030
[35] C. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comp., 78 (2009), pp. 1293-1318. · Zbl 1198.65249
[36] C. Schwab and R. Stevenson, Fractional space-time variational formulations of (Navier-) Stokes equations, SIAM J. Math. Anal., 49 (2017), pp. 2442-2467. · Zbl 1375.35329
[37] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), pp. 377-441. · Zbl 1386.65124
[38] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Springer-Verlag, Berlin 2008. · Zbl 1153.65302
[39] O. Steinbach, Space-time finite element methods for parabolic problems, Comput. Methods Appl. Math., 15 (2015), pp. 551-566. · Zbl 1329.65229
[40] O. Steinbach and H. Yang, Space-time finite element methods for parabolic evolution equations: Discretization, a posteriori error estimation, adaptivity and solution, in Space-Time Methods: Application to Partial Differential Equations, Radon Ser. Comput. Appl. Math. 25, U. Langer and O. Steinbach, eds., de Gruyter, Berlin, 2019, pp. 207-248. · Zbl 1453.65344
[41] O. Steinbach and M. Zank, Coercive space-time finite element methods for initial boundary value problems, Electron. Trans. Numer. Anal., 52 (2020), pp. 154-194. · Zbl 1436.65144
[42] O. Steinbach and M. Zank, A note on the efficient evaluation of a modified Hilbert transformation, J. Numer. Math., 29 (2021), pp. 47-61. · Zbl 1471.65154
[43] R. Stevenson and J. Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations, IMA J. Numer. Anal., 41 (2021), pp. 28-47. · Zbl 1461.65242
[44] M. Tani, A preconditioning strategy for linear systems arising from nonsymmetric schemes in isogeometric analysis, Comput. Math. Appl., 74 (2017), pp. 1690-1702. · Zbl 06924588
[45] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer-Verlag, Berlin, 2006. · Zbl 1105.65102
[46] K. Urban and A. T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comput., 83 (2014), pp. 1599-1615. · Zbl 1320.65129
[47] M. Zank, An exact realization of a modified Hilbert transformation for space-time methods for parabolic evolution equations, Comput. Methods Appl. Math., 21 (2021), pp. 479-496.
[48] M. Zank, Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differential Equations, Monographic Series TU Graz: Computation in Engineering and Science 36, Verlag der Technischen Universität Graz, Graz, Austria, 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.