zbMATH — the first resource for mathematics

A semigroup of operators in the boson Fock space. (English. Russian original) Zbl 0738.47035
Funct. Anal. Appl. 24, No. 2, 135-144 (1990); translation from Funkts. Anal. Prilozh. 24, No. 2, 63-73 (1990).
Let \(F(V_ n)\) be a space of holomorphic functions, where \(V_ n\) is complex Hilbert space of the dimension \(n=1,2,\dots,\infty\). The scalar product is \(\langle f,g\rangle=\iint f(z)\overline {g(z)}\exp(-(z,z))dz d\bar z\). The author investigates the problem of the boundedness of the operators \[ Bf(z)=\iint\exp\left\{ {1\over 2} (z\bar u)\begin{pmatrix} K &L \\ M &N \end{pmatrix} {z^ t \choose \bar u^ t} \right\} f(u)\exp(-(u,u))du d\bar u. \] These operators represent a semigroup of generalized linear- fractional Krein’s transformations of the matrix ball of infinite dimension. The connection between these operators and representation theory is investigated.

47D06 One-parameter semigroups and linear evolution equations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
46E20 Hilbert spaces of continuous, differentiable or analytic functions
Full Text: DOI
[1] F. A. Berezin, The Second Quantization Method [in Russian], Nauka, Moscow (1965). · Zbl 0131.44805
[2] A. M. Vershik and S. V. Kerov, ”Characters and factor-representations of an infinite dimensional unitary group,” Dokl. Akad. Nauk SSSR,267, No. 2, 272-276 (1982). · Zbl 0524.22017
[3] Gr. Segal, ”Unitary representations of some infinite dimensional groups,” Commum. Math. Phys.,80, No. 3, 301-342 (1981). · Zbl 0495.22017 · doi:10.1007/BF01208274
[4] V. I. Ol’shanskii, ”Unitary representations of infinite dimensional pairs (G, K) and the How formalism,” Dokl. Akad. Nauk SSSR,269, No. 1. 33-36 (1983).
[5] Yu. A. Neretin, ”Representations of the Virasoro algebra and affine algebras,” in: Contemporary Problems in Mathematics, Fundamental Directions [in Russian],22, 163-224 (1988). · Zbl 0656.17011
[6] G. I. Ol’hanskii, ”Unitary representations of infinite dimensional classical groups U(p, ?), SO0(p, ?), Sp(p, ?) and the corresponding translation groups,” Funkts. Anal. Prilozhen.,12, No. 3, 32-44 (1978). · Zbl 0392.22012
[7] Yu. A. Neretin, ”Holomorphic extensions of representations of the diffeomorphism group of the circle,” Mat. Sb.,180, No. 5, 635-657 (1989).
[8] Yu. A. Neretin, ”Spinor representation of an infinite dimensional orthogonal semigroup and the Virasoro algebra,” Funkts. Anal. Prilozhen.,23, No. 3, 32-44 (1989. · Zbl 0693.17010
[9] M. L. Nazarov, Yu. A. Neretin, and G. I. Ol’shanskii, ”Semigroupes engendre par la representation de Weil du groupe symplectique de dimension infinie,” C. R. Acad. Sci., Paris, Ser. 1,309, No. 7, 443-446 (1989). · Zbl 0709.43007
[10] Yu. A. Neretin, ”A complex semigroup containing the group of diffeomorphism of a circle,” Funkts. Anal. Prilozhen.,21, No. 2, 82-83 (1987). · Zbl 0627.14023 · doi:10.1007/BF01077998
[11] M. G. Krein and Yu. L. Shmul’yan, ”Fraction-linear transformations with operator coefficients,” in: Mathematical Studies [in Russian], Vol. 2, No. 3, Kishinev (1967), pp. 64-96.
[12] Yu. L. Shmul’yan, ”Theory of linear relations and spaces with an indefinite metric,” Funkts. Anal. Prilozhen.,10, No. 1, 67-72 (1976). · Zbl 0332.46047 · doi:10.1007/BF01075777
[13] Yu. L. Shmul’yan, ”General fraction-linear transformations of operator balls,” Sib. Mat. Zh.,19, No. 2, 419-425 (1978).
[14] D. Shale, ”Linear symmetries of free boson fields,” Trans. Am. Math. Soc.,103, 149-167 (1962). · Zbl 0171.46901 · doi:10.1090/S0002-9947-1962-0137504-6
[15] M. G. Krein, ”An application of the fixed point principle to the theory of linear maps with indefiite metric,” Usp. Mat. Nauk,5, No. 2, 180-190 (1950).
[16] T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric [in Russian], Nauka, Moscow (1986).
[17] V. B. Lidskii, ”Inequalities for eigen and singular values,” in: F. R. Gantmakher, Theory of Matrices [in Russian], 4th edn., Nauka, Moscow (1988), pp. 502-525.
[18] V. A. Khatskevich, ”Generalized PoincarĂ© metric on an operator ball,” Funkts. Anal. Prilozhen.,17, No. 4, 92-93 (1983).
[19] G. I. Pyatetskii-Shapiro, Geometry of Classical Domains and Theory of Automorphic Functions [in Russian], Fizmatgiz, Moscow (1961).
[20] G. I. Ol’shanskii, ”Invariant cones in Lie algebras, Lie semigroups and holomorphic discrete series,” Funkts. Anal. Prilozhen.,15, No. 4, 58-66 (1984).
[21] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes Math., Vol. 261, Springer-Verlag (1972). · Zbl 0265.43008
[22] R. How, ”Oscillator semigroup,” Proc. Symp. Pure Math.,48, 61-132 (1988).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.