zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
”Integrated semigroups” and integrated solutions to abstract Cauchy problems. (English) Zbl 0738.47037
Summary: Concepts which have been developed in the theory of weakly $\sp*$ continuous semigroups on dual Banach spaces are extended to “integrated semigroups”. The relation to integrated solutions of homogeneous and inhomogeneous abstract Cauchy problems is established. The results are illustrated for the wave equation in $L\sb 2(\bbfR\sp m)$.

MSC:
47D06One-parameter semigroups and linear evolution equations
WorldCat.org
Full Text: DOI
References:
[1] Amann, H.: Parabolic evolution equations in interpolation and extrapolation spaces. J. funct. Anal. 78, 233-270 (1988) · Zbl 0654.47019
[2] Arendt, W.: Resolvent positive operators and integrated semigroups. Proc. London math. Soc. 54, 321-349 (1987) · Zbl 0617.47029
[3] Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59, 327-352 (1987) · Zbl 0637.44001
[4] W. Arendt and H. Kellermann, Integrated solutions of Volterra integro-differential equations and applications, preprint. · Zbl 0675.45017
[5] Clément, Ph; Diekmann, O.; Gyllenberg, M.; Heijmans, H. J. A.M; Thieme, H. R.: Perturbation theory for dual semigroups. I. the Sun-reflexive case. Math. ann. 277, 709-725 (1987) · Zbl 0634.47039
[6] Clément, Ph; Diekmann, O.; Gyllenberg, M.; Heijmans, H. J. A.M; Thieme, H. R.: Perturbation theory for dual semigroups II. Time-dependent perturbations in the Sun-reflexive case. Proc. roy. Soc. Edinburgh sect. A 109, 145-172 (1988) · Zbl 0661.47015
[7] Clément, Ph; Diekmann, O.; Gyllenberg, M.; Heijmans, H. J. A.M; Thieme, H. R.: Perturbation theory for dual semigroups. III. nonlinear Lipschitz continuous perturbations in the Sun-reflexive case. Pitman research notes in mathematics series 190 (1989) · Zbl 0675.47036
[8] Clément, Ph; Diekmann, O.; Gyllenberg, M.; Heijmans, H. J. A.M; Thieme, H. R.: Perturbation theory for dual semigroups. IV. the intertwining formula and the canonical pairing. Lecture notes in pure and applied mathematics 116, 95-116 (1989) · Zbl 0699.47028
[9] Clément, Ph; Diekmann, O.; Gyllenberg, M.; Heijmans, H. J. A.M; Thieme, H. R.: A hille-yosida theorem for a class of weakly$\ast $continuous semigroups. Semigroup forum 38, 157-178 (1989) · Zbl 0727.47025
[10] Da Prato, G.; Grisvard, P.: Maximum regularity for evolution equations by interpolation and extrapolation. J. funct. Anal. 58, 107-124 (1984) · Zbl 0593.47041
[11] G. Da Prato and E. Sinestrari, Differential operators with non-dense domain, preprint. · Zbl 0652.34069
[12] Goldstein, J. A.: Semigroups of linear operators and applications. (1985) · Zbl 0592.47034
[13] Hille, E.; Phillips, R. S.: Functional analysis and semigroups. (1957) · Zbl 0078.10004
[14] Kellermann, H.: Integrated semigroups. Thesis (1986)
[15] H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal., to appear. · Zbl 0604.47025
[16] Nagel, R.: Sobolev spaces and semigroups. Semesterberichte funktionalanalysis, 1-20 (1983)
[17] Neubrander, F.: Integrated semigroups and their application to the abstract Cauchy problem. Pac. J. Math. 135, 111-155 (1988) · Zbl 0675.47030
[18] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. (1983) · Zbl 0516.47023
[19] H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Diff. Integr. Equations (to appear). · Zbl 0734.34059
[20] Walther, Th: Abstrakte Sobolev-räume und ihre anwendung auf störungstheorie für generatoren von C0-halbgruppen. Dissertation (1986) · Zbl 0616.46029