Braverman, M. Sh. A probabilistic inequality. (English. Russian original) Zbl 0738.60010 Theory Probab. Math. Stat. 43, 29-34 (1991); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 26-32 (1990). Summary: Let \(\{X_ k\}^ \infty_{k=1}\) be a sequence of independent random variables with identical symmetric distribution such that \(E| X_ 1|^ q<\infty\), where \(0<q\leq 2\). It is shown that under certain restrictions on the distribution of these variables the inequality \[ P\left[\left|\sum^ n_{k=1}a_ kX_ k\right|\left(\sum^ n_{k=1}| a_ k|^ q\right)^{-1/q}\geq x\right]\geq BP[| X_ 1|\geq x] \] holds for \(x\geq 1\), where the constant \(B\) is independent of \(n\) and the numbers \(a_ k\). MSC: 60E15 Inequalities; stochastic orderings 60G60 Random fields Keywords:Bernstein inequality PDFBibTeX XMLCite \textit{M. Sh. Braverman}, Theory Probab. Math. Stat. 43, 29--34 (1990; Zbl 0738.60010); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 26--32 (1990)