Piterbarg, V. I. A remark on the strong invariance principle for a shot-effect process. (English. Russian original) Zbl 0738.60016 Theory Probab. Math. Stat. 43, 139-141 (1991); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 124-126 (1990). Summary: Let \(\pi_ \lambda(\Delta)\) be a stationary Poisson point process on the line with intensity \(\lambda\), and let \(f(t)\) be a function of bounded variation with finite support. The shot-effect process \(\xi_ \lambda(t)=\int f(t-s)\pi_ \lambda(ds)\) is considered. The strong invariance principle is used to prove a limit theorem of Gnedenko type for the distribution of the variable \(\sup_{[0,T]}\lambda^{- 1/2}(\xi_ \lambda(t)-E\xi_ \lambda(t))\), \(T\to\infty\) and \(\lambda\to\infty\) in such a way that \(\lambda T^{-\alpha}\to\infty\), \(\alpha>0\). MSC: 60F05 Central limit and other weak theorems 60G10 Stationary stochastic processes Keywords:stationary Poisson point process; strong invariance principle; limit theorem PDFBibTeX XMLCite \textit{V. I. Piterbarg}, Theory Probab. Math. Stat. 43, 139--141 (1990; Zbl 0738.60016); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 124--126 (1990)