Buldygin, V. V.; Solntsev, S. A. A generalization of the contraction principle in the space of convergent sequences. (English. Russian original) Zbl 0738.60029 Theory Probab. Math. Stat. 43, 35-39 (1991); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 32-37 (1990). Summary: Let \((Y_{nk};\;n,k\geq 1)\) be an array of random elements of a separable Banach space \({\mathfrak X};(\beta_{nk}; n,k\geq 1)\) is a real contraction array; \(c({\mathfrak X})\) is the space of sequences convergent in the norm of \({\mathfrak X}\). Conditions on \((Y_{nk})\) and \((\beta_{nk})\) are established under which the condition that \((\sum^ \infty_{k=1}Y_{nk},\;n\geq 1)\in c({\mathfrak X})\) a.s. implies that \((\sum^ \infty_{k=1}\beta_{nk}Y_{nk},\;n\geq 1)\in c({\mathfrak X})\) a.s. MSC: 60G17 Sample path properties 46B25 Classical Banach spaces in the general theory Keywords:contraction principle; array of random elements; Banach space PDFBibTeX XMLCite \textit{V. V. Buldygin} and \textit{S. A. Solntsev}, Theory Probab. Math. Stat. 43, 35--39 (1990; Zbl 0738.60029); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 32--37 (1990)