Maximum-likelihood estimation for hidden Markov models. (English) Zbl 0738.62081

Summary: Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. The consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on entropy convergence is established for hidden Markov models.


62M05 Markov processes: estimation; hidden Markov models
62F12 Asymptotic properties of parametric estimators
62M09 Non-Markovian processes: estimation
Full Text: DOI


[1] Askar, M.; Derin, H., A recursive algorithm for the Bayes solution of the smoothing problem, IEEE trans. automat. control, 26, 558-560, (1981) · Zbl 0475.93075
[2] Baum, L.E.; Eagon, J.A., An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology, Bull. amer. math. soc., 73, 360-363, (1967) · Zbl 0157.11101
[3] Baum, L.E.; Petrie, T.A., Statistical inference for probabilistic functions of finite state Markov chains, Ann. math. statist., 37, 1554-1563, (1966) · Zbl 0144.40902
[4] Baum, L.E.; Petrie, T.; Soules, G.; Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. math. statist., 41, 164-171, (1970) · Zbl 0188.49603
[5] Churchill, G.A., Stochastic models for heterogeneous DNA sequences, Bull. math. biol., 51, 79-94, (1989) · Zbl 0662.92012
[6] Dempster, A.P.; Laird, N.M.; Rubin, D.B., Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion), J. roy. statist. soc. ser. B, 39, 1-38, (1977) · Zbl 0364.62022
[7] Furstenberg, H.; Kesten, H., Products of random matrices, Ann. math. statist., 31, 457-469, (1960) · Zbl 0137.35501
[8] Juang, B.-H.; Rabiner, L.R., A probabilistic distance measure for hidden Markov models, AT&T tech. J., 64, 391-408, (1985)
[9] Karlin, S.; Taylor, H.M., A first course in stochastic processes, (1975), Academic Press New York · Zbl 0315.60016
[10] Kiefer, J.; Wolfowitz, J., Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters, Ann. math. statist., 27, 887-906, (1956) · Zbl 0073.14701
[11] Kingman, J.F.C., Subadditive processes, (), 167-223
[12] Kitagawa, G., Non-Gaussian state-space modeling of nonstationary time series, J. amer. statist. assoc., 82, 1032-1041, (1987) · Zbl 0644.62088
[13] Kohn, R.; Ansley, C.F., Comment on kitagawa (1987), J. amer. statist. assoc., 82, 1041-1044, (1987)
[14] Levinson, S.E.; Rabiner, L.R.; Sondhi, M.M., An introduction to the application of the theory of probabilistic functions of a Markov process in automatic speech recognition, Bell system tech. J., 62, 1035-1074, (1983) · Zbl 0507.68058
[15] Lindgren, G., Markov regime models for mixed distributions and switching regressions, Scand. J. statist., 5, 81-91, (1978) · Zbl 0382.62073
[16] Petrie, T., Probabilistic functions of finite state Markov chains, Ann. math. statist., 40, 97-115, (1969) · Zbl 0181.21201
[17] Redner, R., Note on the consistency of the maximum likelihood estimate for non-identifiable distributions, Ann. statist., 9, 225-228, (1981) · Zbl 0453.62021
[18] Smith, J.A., Statistical modeling of rainfall occurrences, Water resour. res., 23, 885-893, (1987)
[19] Teicher, H., Identifiability of mixtures of product measures, Ann. math. statist., 38, 1302-1330, (1967) · Zbl 0153.47904
[20] Wald, A., Note on the consistency of the maximum likelihood estimate, Ann. math. statist., 20, 595-601, (1949) · Zbl 0034.22902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.