zbMATH — the first resource for mathematics

Large claims in credibility. (English) Zbl 0738.62097
The present paper which has been presented to the International ASTIN Colloquium in 1991 deals with the problem of “large” and - as the author calls it - “much larger” claims in experience rating. First, the author gives a survey of some basic models in credibility theory. Then he develops procedures for data sets with outliers (“large claims”) in the classical model of credibility theory by using techniques from the theory of robust estimation (\(M\)- and \(L\)-estimators). Subsequently, this approach is extended to the regression model and applied to the so-called Bühlmann-Straub model.

62P05 Applications of statistics to actuarial sciences and financial mathematics
62F35 Robustness and adaptive procedures (parametric inference)
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI
[1] Albrecht, P. (1984): Summary report on large claims. Proceedings of the 4 country ASTIN-symposrum. Akersloot.
[2] Barnett, V. andLewis, T. (1978): Outliers in statistical data. John Wiley, New York.
[3] Bühlmann, H. (1967): Experience rating and credibility. ASTIN bulletin.
[4] Bühlmann, H. andSträub, E. (1970): Glaubwürdigkeit für Schadensätze. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker. · Zbl 0197.46502
[5] Bühlmann, H., Gisler, A. andJewell, W. S. (1982): Excess claims and data trimming in the context of credibility rating procedures. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker. · Zbl 0521.62085
[6] David, H. A. (1981): Order statistics. John Wiley. New York. · Zbl 0553.62046
[7] Derron, M. (1966): A study in credibility betterment through exclusion of the largest claims. ASTIN bulletin.
[8] De Vylder, F. (1978): Parameter estimation in credibility. ASTIN bulletin. · Zbl 0527.62092
[9] Gerber, H. U. (1982): An unbayesed approach to credibility. Insurance: Mathematics & Economics. · Zbl 0499.62091
[10] Gisler, A. (1980): Optimum trimming of data in the credibility model. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker. · Zbl 0456.62080
[11] Hachemeister, C. A. (1975): Credibility for regression models with an application to trend. In:Kahn, Credibility. Theory and applications. · Zbl 0354.62057
[12] Heilmann, W. R. andStröter, K. (1987): On the robustness of premium principles. Insurance: Mathematics and Economics. · Zbl 0617.62110
[13] Huber, P. J. (1980): Robust Statistics. John Wiley. New York.
[14] Klugmann, S. (1984): Robust credibility. Proceedings of the Actuarial Research Conference. Berkeley.
[15] Kremer, E. (1985): Einführung in die Versicherungsmathematik, Vandenhoeck & Ruprecht, Göttingen und Zürich. · Zbl 0578.62089
[16] Kremer, E. (1986): On robust premium principles. Insurance: Mathematics and Economics. · Zbl 0609.62135
[17] Naes, T. andMartens, H. (1987): Testing adequacy of linear random models. Statistics 18.
[18] Norberg, R. (1980): Empirical Bayes credibility. Scandinavian Actuarial Journal. · Zbl 0447.62107
[19] Norberg, R. (1982): On optimal parameter estimation in credibility. Insurance: Mathematics and Economics. · Zbl 0504.62090
[20] Rousseuw, P., Daniels, B. andLeroy, A. (1984): Applying robust regression to insurance. Insurance: Mathematics and Economics.
[21] Straub, E. (1976): What is an adequate dividing line between normal claims and large claims. Transactions of the international congress of actuaries.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.