zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Structural identifiability of the parameters of a nonlinear batch reactor model. (English) Zbl 0738.92010
Summary: The similarity transformation approach is used to analyze the structural identifiability of the parameters of a nonlinear model of microbial growth in a batch reactor in which only the concentration of microorganisms is measured. It is found that some of the model parameters are unidentifiable from this experiment, thus providing the first example of a real-life nonlinear model that turns out not to be globally identifiable. If it is possible to measure the initial concentration of growth-limiting substrate as well, all model parameters are globally identifiable.

92C99Physiological, cellular and medical topics
93B30System identification
92D25Population dynamics (general)
93C15Control systems governed by ODE
93C95Applications of control theory
Full Text: DOI
[1] Button, D. K.: Kinetics of nutrient-limited transport and microbial growth. Microbio. rev. 49, 270-297 (1985)
[2] Chappell, M. J.; Godfrey, K. R.: Structural identifiability of nonlinear systems: applications to a batch reactor model. 9th IFAC/IFORS symposium on identification and system parameter estimation (8--12 July 1991)
[3] Chappell, M. J.; Godfrey, K. R.; Vajda, S.: Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. Math. biosci. 102, 41-73 (1990) · Zbl 0789.93039
[4] Hermann, R.; Krener, A. J.: Nonlinear controllability and observability. IEEE trans. Autom. control 22, 728-740 (1977) · Zbl 0396.93015
[5] Holmberg, A.: On the practical identifiability of microbial growth models incorporating michaelis-menten type nonlinearities. Math. biosci. 62, 23-43 (1982) · Zbl 0489.92021
[6] Isidori, A.: Nonlinear control systems: an introduction. (1985) · Zbl 0569.93034
[7] Lecourtier, Y.; Lamnabhi-Lagarrigue, F.; Walter, E.: Volterra and generating power series approaches to identifiability testing. Identifiability of parametric models, 50-66 (1987) · Zbl 0667.93020
[8] Pohjanpalo, H.: System identifiability based on the power series expansion of the solution. Math biosci. 41, 21-33 (1978) · Zbl 0393.92008
[9] Vajda, S.: Identifiability of polynomial systems: structural and numerical aspects. Identifiability of parametric models, 42-49 (1987) · Zbl 0649.93017
[10] Vajda, S.; Rabitz, H.: State isomorphism approach to global identifiability of nonlinear systems. IEEE trans. Autom. control 34, 220-223 (1989) · Zbl 0669.93014
[11] Vajda, S.; Godfrey, K. R.; Rabitz, H.: Similarity transformation approach to structural identifiability of nonlinear models. Math. biosci. 93, 217-248 (1989) · Zbl 0696.92001
[12] Walter, E.: Identifiability of state space models. Lect. notes biomath. 46 (1982)
[13] Walter, E.; Lecourtier, Y.: Unidentifiable compartmental models: what to do?. Math. biosci. 56, 1-25 (1981) · Zbl 0465.93028