Swarm intelligence for self-organized clustering. (English) Zbl 07382235

Summary: Algorithms implementing populations of agents which interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here a swarm system, called Databionic swarm (DBS), is introduced which is able to adapt itself to structures of high-dimensional data characterized by distance and/or density-based structures in the data space. By exploiting the interrelations of swarm intelligence, self-organization and emergence, DBS serves as an alternative approach to the optimization of a global objective function in the task of clustering. The swarm omits the usage of a global objective function and is parameter-free because it searches for the Nash equilibrium during its annealing process.
To our knowledge, DBS is the first swarm combining these approaches. Its clustering can outperform common clustering methods such as K-means, PAM, single linkage, spectral clustering, model-based clustering, and Ward, if no prior knowledge about the data is available. A central problem in clustering is the correct estimation of the number of clusters. This is addressed by a DBS visualization called topographic map which allows assessing the number of clusters. It is known that all clustering algorithms construct clusters, irrespective of the data set contains clusters or not. In contrast to most other clustering algorithms, the topographic map identifies, that clustering of the data is meaningless if the data contains no (natural) clusters. The performance of DBS is demonstrated on a set of benchmark data, which are constructed to pose difficult clustering problems and in two real-world applications.


68Txx Artificial intelligence
Full Text: DOI arXiv


[1] Abraham, A.; Guo, H.; Liu, H., Swarm intelligence: foundations, perspectives and applications, (Nedjah, N.; Mourelle, L.d. M., Swarm Intelligent Systems (2006), Springer), 3-25
[2] Aeberhard, S.; Coomans, D.; De Vel, O., Comparison of classifiers in high dimensional settings (1992), Dept. Math. Statist., James Cook Univ., North Queensland, Australia, Tech. Rep., Vol. (92-02)
[3] Anderson, E., The irises of the Gaspé Peninsula, Bull. Am. Iris Soc., 59, 2-5 (1935)
[4] Aparna, K.; Nair, M. K., Enhancement of K-means algorithm using ACO as an optimization technique on high dimensional data, (Proc. Electronics and Communication Systems (ICECS), 2014 International Conference on (2014), IEEE), 1-5
[5] Arabie, P.; Hubert, L. J.; De Soete, G., Clustering and Classification (1996), World Scientific: World Scientific Singapore · Zbl 0836.00014
[6] Arumugam, M. S.; Chandramohan, A.; Rao, M., Competitive approaches to PSO algorithms via new acceleration co-efficient variant with mutation operators, (Proc. Sixth International Conference on Computational Intelligence and Multimedia Applications (ICCIMA’05) (2005), IEEE), 225-230
[7] Aubert, A. H.; Thrun, M. C.; Breuer, L.; Ultsch, A., Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions, Sci. Rep., 6, Article 31536 pp. (2016)
[8] Beckers, R.; Holland, O.; Deneubourg, J.-L., From local actions to global tasks: stigmergy and collective robotics, (Proc. Artificial Life IV, vol. 181 (1994)), 189
[9] Bellman, R., Dynamic Programming (1957), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0077.13605
[10] Beni, G., From swarm intelligence to swarm robotics, (Proc. International Workshop on Swarm Robotics (2004), Springer), 1-9
[11] Beni, G.; Wang, J., Swarm intelligence in cellular robotic systems, (Proc. NATO Advanced Workshop on Robots and Biological Systems. Proc. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy (1989))
[12] Benyus, J., Biomimicry: Innovation Inspired by Design (2002), Harper Perennial: Harper Perennial New York
[13] Bogon, T., Agentenbasierte Schwarmintelligenz (2013), Springer-Verlag: Springer-Verlag Trier, Germany, Phd Dissertation
[14] Bonabeau, E.; Dorigo, M.; Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems (1999), Oxford University Press: Oxford University Press New York · Zbl 1003.68123
[15] Bonabeau, E.; Meyer, C., Swarm intelligence: a whole new way to think about business, Harv. Bus. Rev., 79, 5, 106-115 (2001)
[16] Bouveyron, C.; Brunet-Saumard, C., Model-based clustering of high-dimensional data: a review, Comput. Stat. Data Anal., 71, 52-78 (2014) · Zbl 1471.62032
[17] Brooks, R. A., Intelligence without representation, Artif. Intell., 47, 1, 139-159 (1991)
[18] Buhl, J.; Sumpter, D. J.; Couzin, I. D.; Hale, J. J.; Despland, E.; Miller, E.; Simpson, S. J., From disorder to order in marching locusts, Science, 312, 5778, 1402-1406 (2006)
[19] Chinchor, N., MUC-4 evaluation metrics, (Proc. Proceedings of the 4th Conference on Message Understanding (1992), Association for Computational Linguistics), 22-29
[20] Cormack, R. M., A review of classification, J. R. Stat. Soc. A, General, 321-367 (1971)
[21] Dasgupta, S.; Gupta, A., An elementary proof of a theorem of Johnson and Lindenstrauss, Random Struct. Algorithms, 22, 1, 60-65 (2003) · Zbl 1018.51010
[22] P. Demartines, J. Hérault, CCA: “Curvilinear component analysis”, in: Proc. 15° Colloque sur le traitement du signal et des images, Vol. 199, GRETSI, Groupe d’Etudes du Traitement du Signal et des Images, France, 18-21 September 1995.
[23] Deneubourg, J.-L.; Goss, S.; Franks, N.; Sendova-Franks, A.; Detrain, C.; Chrétien, L., The dynamics of collective sorting robot-like ants and ant-like robots, (Proc. Proceedings of the First International Conference on Simulation of Adaptive Behavior on From Animals to Animats (1991)), 356-363
[24] Dijkstra, E. W., A note on two problems in connexion with graphs, Numer. Math., 1, 1, 269-271 (1959) · Zbl 0092.16002
[25] Duda, R. O.; Hart, P. E.; Stork, D. G., Pattern Classification (2001), John Wiley & Sons: John Wiley & Sons Ney York, USA · Zbl 0968.68140
[26] Eberhart, R. C.; Shi, Y.; Kennedy, J., Swarm Intelligence, The Morgan Kaufmann Series in Evolutionary Computation (2001)
[27] Erwin, E.; Obermayer, K.; Schulten, K., Self-organizing maps: stationary states, metastability and convergence rate, Biol. Cybern., 67, 1, 35-45 (1992) · Zbl 0747.92005
[28] Esmin, A. A.; Coelho, R. A.; Matwin, S., A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data, Artif. Intell. Rev., 44, 1, 23-45 (2015)
[29] Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, (Proc. KDD’96 (1996)), 226-231
[30] Everitt, B. S.; Landau, S.; Leese, M., (McAllister, L., Cluster Analysis (2001), Arnold: Arnold London) · Zbl 1205.62076
[31] Fathian, M.; Amiri, B., A honeybee-mating approach for cluster analysis, Int. J. Adv. Manuf. Technol., 38, 7-8, 809-821 (2008)
[32] Feynman, R. P.; Leighton, R. B.; Sands, M., (Köhler, K.-H.; Schröder, K.-E.; Beckmann, W. B.P., Mechanik, Strahlung, Wärme, vol. 1 (2007), Oldenbourg Verlag: Oldenbourg Verlag Munich, Germany)
[33] Florek, K.; Łukaszewicz, J.; Perkal, J.; Steinhaus, H.; Zubrzycki, S., Sur la liaison et la division des points d’un ensemble fini, Proc. Colloquium Mathematicae, vol. 2, 282-285 (1951), Institute of Mathematics Polish Academy of Sciences · Zbl 0045.26103
[34] Flury, B.; Riedwyl, H., Multivariate Statistics, a Practical Approach (1988), Chapman and Hall: Chapman and Hall London
[35] Forest, S., Emergent computation: self-organizing, collective, and cooperative phenomena in natural and artificial computing networks, Physica D, 42, 1-11 (1990)
[36] Fraley, C.; Raftery, A. E., Model-based clustering, discriminant analysis, and density estimation, J. Am. Stat. Assoc., 97, 458, 611-631 (2002) · Zbl 1073.62545
[37] C. Fraley, A.E. Raftery, MCLUST version 3: an R package for normal mixture modeling and model-based clustering, DTIC Document, 2006.
[38] Franck, P.; Cameron, E.; Good, G.; Rasplus, J. Y.; Oldroyd, B., Nest architecture and genetic differentiation in a species complex of Australian stingless bees, Mol. Ecol., 13, 8, 2317-2331 (2004)
[39] Garnier, S.; Gautrais, J.; Theraulaz, G., The biological principles of swarm intelligence, Swarm Intell., 1, 1, 3-31 (2007)
[40] Geman, S.; Bienenstock, E.; Doursat, R., Neural networks and the bias/variance dilemma, Neural Comput., 4, 1, 1-58 (1992)
[41] Gigerenzer, G.; Brighton, H., Homo heuristicus: why biased minds make better inferences, Top. Cogn. Sci., 1, 1, 107-143 (2009)
[42] Giraldo, L. F.; Lozano, F.; Quijano, N., Foraging theory for dimensionality reduction of clustered data, Mach. Learn., 82, 1, 71-90 (2011)
[43] Goldstein, J., Emergence as a construct: history and issues, Emergence, 1, 1, 49-72 (1999)
[44] Grassé, P.-P., La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs, Insectes Soc., 6, 1, 41-80 (1959)
[45] Grosan, C.; Abraham, A.; Chis, M., Swarm Intelligence in Data Mining, 1-20 (2006), Springer
[46] Handl, J.; Knowles, J.; Dorigo, M., Ant-based clustering: a comparative study of its relative performance with respect to k-means, average link and 1d-som, (Design and Application of Hybrid Intelligent Systems (2003)), 204-213
[47] Handl, J.; Knowles, J.; Dorigo, M., Ant-based clustering and topographic mapping, Artif. Life, 12, 1, 35-62 (2006)
[48] Handl, J.; Knowles, J.; Kell, D. B., Computational cluster validation in post-genomic data analysis, Bioinformatics, 21, 15, 3201-3212 (2005)
[49] Hartigan, J. A., Consistency of single linkage for high-density clusters, J. Am. Stat. Assoc., 76, 374, 388-394 (1981) · Zbl 0468.62053
[50] Haug, H.; Koch, S. W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, Vol. 5 (2004), World Scientific: World Scientific Singapore
[51] Havens, T. C.; Spain, C. J.; Salmon, N. G.; Keller, J. M., Roach infestation optimization, (Proc. Swarm Intelligence Symposium, 2008. Proc. Swarm Intelligence Symposium, 2008, SIS 2008 (2008), IEEE), 1-7
[52] Hennig, C., How many bee species? A case study in determining the number of clusters, (Data Analysis, Machine Learning and Knowledge Discovery (2014), Springer), 41-49
[53] (Hennig, C.; etal., Handbook of Cluster Analysis (2015), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press New York, USA)
[54] Herrmann, L., Swarm-Organized Topographic Mapping (2011), Philipps-Universität Marburg: Philipps-Universität Marburg Marburg, Doctoral dissertation
[55] Herrmann, L.; Ultsch, A., The architecture of ant-based clustering to improve topographic mapping, (Ant Colony Optimization and Swarm Intelligence (2008), Springer), 379-386
[56] Herrmann, L.; Ultsch, A., Explaining ant-based clustering on the basis of self-organizing maps, (Proc. ESANN (2008), Citeseer), 215-220
[57] Herrmann, L.; Ultsch, A., Clustering with swarm algorithms compared to emergent SOM, (Proc. International Workshop on Self-Organizing Maps (2009), Springer), 80-88
[58] Hinton, G. E.; Roweis, S. T., Stochastic neighbor embedding, (Proc. Advances in Neural Information Processing Systems (2002)), 833-840
[59] Hunklinger, S., Festkörperphysik (2009), Oldenbourg Verlag
[60] Jafar, O. M.; Sivakumar, R., Ant-based clustering algorithms: a brief survey, Int. J. Comput. Theory Eng., 2, 5, 787 (2010)
[61] Jain, A. K.; Dubes, R. C., Algorithms for Clustering Data (1988), Prentice Hall College Div: Prentice Hall College Div Englewood Cliffs, New Jersey, USA · Zbl 0665.62061
[62] Janich, P.; Duncker, H.-R., Emergenz-Lückenbüssergottheit für Natur- und Geisteswissenschaften (2011), F. Steiner
[63] Jennings, N. R.; Sycara, K.; Wooldridge, M., A roadmap of agent research and development, Auton. Agents Multi-Agent Syst., 1, 1, 7-38 (1998)
[64] Johnson, William B.; Lindenstrauss, Joram, Extensions of Lipschitz mappings into a Hilbert space, Contemp. Math., 26, 1, 189-206 (1984) · Zbl 0539.46017
[65] Kämpf, D.; Ultsch, A., An overview of artificial life approaches for clustering, (From Data and Information Analysis to Knowledge Engineering (2006), Springer), 486-493
[66] Karaboga, D., An idea based on honey bee swarm for numerical optimization (2005), Erciyes University, Engineering Faculty, Computer Engineering Department, Technical report-tr06
[67] Karaboga, D.; Akay, B., A survey: algorithms simulating bee swarm intelligence, Artif. Intell. Rev., 31, 1-4, 61-85 (2009)
[68] Karaboga, D.; Ozturk, C., A novel clustering approach: Artificial Bee Colony (ABC) algorithm, Appl. Soft Comput., 11, 1, 652-657 (2011)
[69] Kaufman, L.; Rousseeuw, P. J., Partitioning around medoids (program pam), (Finding Groups in Data: An Introduction to Cluster Analysis (1990)), 68-125
[70] Kaufman, L.; Rousseeuw, P. J., Finding Groups in Data: An Introduction to Cluster Analysis (2005), John Wiley & Sons Inc.: John Wiley & Sons Inc. Hoboken, New York
[71] Kaur, P.; Rohil, H., Applications of swarm intelligence in data clustering: a comprehensive review, Int. J. Res. Advent Technol., 3, 4, 85-95 (2015)
[72] Kelso, J. A.S., Dynamic Patterns: The Self-Organization of Brain and Behavior (1997), MIT Press: MIT Press Cambridge, Massachusetts, London, England
[73] Kennedy, J.; Eberhart, R., Particle swarm optimization, (IEEE International Conference on Neural Networks, Vol. 4 (1995), IEEE Service Center: IEEE Service Center Piscataway), 1942-1948
[74] Kim, Jaegwon, Emergence: Core ideas and issues, Synthese, 151, 3, 547-559 (2006), Springer
[75] J. Kleinberg, An impossibility theorem for clustering, in: Proc. Advances in Neural Information Processing Systems, vol. 15, MIT Press, Vancouver, British Columbia, Canada, 9-14 December 2003, pp. 463-470.
[76] Kohonen, T., Self-organized formation of topologically correct feature maps, Biol. Cybern., 43, 1, 59-69 (1982) · Zbl 0466.92002
[77] Kringel, D.; Geisslinger, G.; Resch, E.; Oertel, B. G.; Thrun, M. C.; Heinemann, S.; Lötsch, J., Machine-learned analysis of the association of next-generation sequencing based human TRPV1 and TRPA1 genotypes with the sensitivity to heat stimuli and topically applied capsaicin, Pain, 159, 7 (2018)
[78] Legg, S.; Hutter, M., A collection of definitions of intelligence, Front. Artif. Intell. Appl., 157, 17 (2007)
[79] Li, J.; Xiao, X., Multi-swarm and multi-best particle swarm optimization algorithm, (Proc. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on (2008), IEEE), 6281-6286
[80] Linde, Y.; Buzo, A.; Gray, R., An algorithm for vector quantizer design, IEEE Trans. Commun., 28, 1, 84-95 (1980)
[81] Lötsch, J.; Ultsch, A., Exploiting the structures of the U-matrix, (Villmann, T.; Schleif, F.-M.; Kaden, M.; Lange, M., Proc. Advances in Self-Organizing Maps and Learning Vector Quantization. Proc. Advances in Self-Organizing Maps and Learning Vector Quantization, Mittweida, Germany, 2-4 July 2014 (2014), Springer International Publishing), 249-257
[82] Lumer, E. D.; Faieta, B., Diversity and adaptation in populations of clustering ants, (Proc. Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3 (1994), MIT Press), 501-508
[83] MacQueen, J., Some methods for classification and analysis of multivariate observations, (Proc. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1 (1967)), 281-297, Oakland, CA, USA · Zbl 0214.46201
[84] Marinakis, Y.; Marinaki, M.; Matsatsinis, N., A hybrid clustering algorithm based on honey bees mating optimization and greedy randomized adaptive search procedure, (Proc. International Conference on Learning and Intelligent Optimization (2007), Springer), 138-152
[85] Martens, D.; Baesens, B.; Fawcett, T., Editorial survey: swarm intelligence for data mining, Mach. Learn., 82, 1, 1-42 (2011)
[86] McDonnell, R., International GIS dictionary (1995), 30.11.2016, 11:10
[87] Menéndez, H. D.; Otero, F. E.; Camacho, D., MACOC: a medoid-based ACO clustering algorithm, (Proc. International Conference on Swarm Intelligence (2014), Springer), 122-133
[88] Mirkin, B. G., Clustering: A Data Recovery Approach (2005), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL, USA
[89] Mlot, N. J.; Tovey, C. A.; Hu, D. L., Fire ants self-assemble into waterproof rafts to survive floods, Proc. Natl. Acad. Sci., 108, 19, 7669-7673 (2011)
[90] Nash, J. F., Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA, 36, 1, 48-49 (1950) · Zbl 0036.01104
[91] Nash, J. F., Non-cooperative games, Ann. Math., 286-295 (1951) · Zbl 0045.08202
[92] Neumann, L. J.; Morgenstern, O., Theory of Games and Economic Behavior, vol. 60 (1953), Princeton University Press: Princeton University Press Princeton, USA
[93] Ng, A. Y.; Jordan, M. I.; Weiss, Y., On spectral clustering: analysis and an algorithm, Adv. Neural Inf. Process. Syst., 2, 849-856 (2002)
[94] (Nisan, N.; Roughgarden, T.; Tardos, E.; Vazirani, V. V., Algorithmic Game Theory (2007), Cambridge University Press: Cambridge University Press New York, USA) · Zbl 1130.91005
[95] Nybo, K.; Venna, J.; Kaski, S., The self-organizing map as a visual information retrieval method, (Proceedings of WSOM’07, 6th International Workshop on Self-Organizing Maps (2007))
[96] Omar, E.; Badr, A.; Hegazy, A. E.-F., Hybrid AntBased clustering algorithm with cluster analysis techniques, J. Comput. Sci., 9, 780-793 (2013), Citeseer
[97] Ouadfel, S.; Batouche, M., An efficient ant algorithm for swarm-based image clustering 1, J. Comput. Sci., 3, 3, 2-167 (2007), 162
[98] O’Connor, T.; Wong, H. Y., Emergent properties, (Zalta, E. N., The Stanford Encyclopedia of Philosophy (2015), Stanford, Kalifornien, Metaphysics Research Lab, Stanford University)
[99] Parpinelli, R. S.; Lopes, H. S., New inspirations in swarm intelligence: a survey, Int. J. Bio-Inspir. Comput., 3, 1, 1-16 (2011)
[100] Pasquier, V., Lattice derivation of modular invariant partition functions on the torus, J. Phys. A, Math. Gen., 20, 18, Article L1229 pp. (1987)
[101] Passino, K. M., Modeling and cohesiveness analysis of midge swarms, Int. J. Swarm Intell. Res., 4, 4, 1-22 (2013)
[102] Pham, D.; Otri, S.; Afify, A.; Mahmuddin, M.; Al-Jabbouli, H., Data clustering using the bees algorithm, (Proceedings of 40th CIRP International Manufacturing Systems Seminar (2007))
[103] Rana, S.; Jasola, S.; Kumar, R., A review on particle swarm optimization algorithms and their applications to data clustering, Artif. Intell. Rev., 35, 3, 211-222 (2011)
[104] R Core Team, R: A language and environment for statistical computing (2020), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria
[105] Reynolds, C. W., Flocks, herds and schools: a distributed behavioral model, ACM SIGGRAPH Comput. Graph., 21, 4, 25-34 (1987)
[106] Şahin, E., Swarm robotics: from sources of inspiration to domains of application, (Proc. International Workshop on Swarm Robotics (2004), Springer), 10-20
[107] Schelling, T. C., Models of segregation, Am. Econ. Rev., 59, 2, 488-493 (1969)
[108] Schneirla, T., Army Ants, a Study in Social Organization (1971), W.H. Freeman and Company: W.H. Freeman and Company San Francisco, USA
[109] Shelokar, P.; Jayaraman, V. K.; Kulkarni, B. D., An ant colony approach for clustering, Anal. Chim. Acta, 509, 2, 187-195 (2004)
[110] Stephens, D. W.; Krebs, J. R., Foraging Theory (1986), Princeton University Press: Princeton University Press New Jersey, USA
[111] Tan, S. C.; Ting, K. M.; Teng, S. W., Reproducing the results of ant-based clustering without using ants, (Proc. 2006 IEEE International Conference on Evolutionary Computation (2006), IEEE), 1760-1767
[112] Theodoridis, S.; Koutroumbas, K., Pattern Recognition (2009), Elsevier: Elsevier Canada
[113] Thrun, M. C., DatabionicSwarm (Version 1.0), Marburg. R package, requires CRAN packages: Rcpp, RcppArmadillo, deldir, Suggests: plotrix, geometry, sp, spdep, AdaptGauss, ABCanalysis, parallel (2017), Retrieved from
[114] Thrun, M. C., (Ultsch, A.; Hüllermeier, E., Projection Based Clustering Through Self-Organization and Swarm Intelligence (2018), Springer: Springer Heidelberg), Doctoral dissertation
[115] Thrun, M. C., Cluster analysis of per capita gross domestic products, Entrep. Bus. Econ. Rev. (EBER), 7, 1, 217-231 (2019)
[116] Thrun, M. C.; Breuer, L.; Ultsch, A., Knowledge discovery from low-frequency stream nitrate concentrations: hydrology and biology contributions, (Proc. European Conference on Data Analysis (ECDA). Proc. European Conference on Data Analysis (ECDA), Paderborn, Germany (2018)), 46-47
[117] Thrun, M. C.; Gehlert, T.; Ultsch, A., Analyzing the fine structure of distributions, PLoS ONE, 15, 10 (2020)
[118] Thrun, M. C.; Ultsch, A., Uncovering high-dimensional structures of projections from dimensionality reduction methods, MethodsX, Article 101093 pp. (2020), in press
[119] Thrun, M. C.; Ultsch, A., Clustering benchmark datasets exploiting the fundamental clustering problems, Data in Brief, 30, C, Article 105501 pp. (2020)
[120] Thrun, M. C.; Lerch, F.; Lötsch, J.; Ultsch, A., Visualization and 3D printing of multivariate data of biomarkers, (Skala, V., International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Vol. 24. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Vol. 24, Plzen (2016)), 7-16
[121] Timm, I. J., Strategic Management of Autonomous Software Systems, TZI-Bericht Center for Computing Technologies (2006), University of Bremen: University of Bremen Bremen
[122] Toussaint, G. T., The relative neighbourhood graph of a finite planar set, Pattern Recognit., 12, 4, 261-268 (1980) · Zbl 0437.05050
[123] Tsai, C.-F.; Tsai, C.-W.; Wu, H.-C.; Yang, T., ACODF: a novel data clustering approach for data mining in large databases, J. Syst. Softw., 73, 1, 133-145 (2004)
[124] Uber_Pix, A spherical school of fish (2015), 567289_1280_1024.jpg, 1280x1024, twitter
[125] Ultsch, A., Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series, (Oja, E.; Kaski, S., Kohonen Maps (1999), Elsevier), 33-46
[126] Ultsch, A., Clustering with DataBots, (Int. Conf. Advances in Intelligent Systems Theory and Applications (AISTA) (2000), IEEE ACT Section: IEEE ACT Section Canberra, Australia), 99-104
[127] Ultsch, A., Visualisation and classification with artificial life, (Data Analysis, Classification, and Related Methods (2000), Springer), 229-234 · Zbl 1031.68569
[128] Ultsch, A., Clustering wih SOM: U* C, (Proceedings of the 5th Workshop on Self-Organizing Maps, vol. 2 (2005)), 75-82
[129] Ultsch, A., Emergence in self-organizing feature maps, (Proc. 6th Workshop on Self-Organizing Maps (WSOM 07) (2007), University Library of Bielefeld: University Library of Bielefeld Bielefeld, Germany), 1-7
[130] Ultsch, A.; Behnisch, M.; Lötsch, J., ESOM visualizations for quality assessment in clustering, (Merényi, E.; Mendenhall, J. M.; O’Driscoll, P., Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of the 11th International Workshop (WSOM 2016). Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of the 11th International Workshop (WSOM 2016), Houston, Texas, USA, 6-8 January 2016 (2016), Springer International Publishing: Springer International Publishing Cham), 39-48
[131] Ultsch, A.; Herrmann, L., The architecture of emergent self-organizing maps to reduce projection errors, (Proc. ESANN (2005)), 1-6
[132] Ultsch, A.; Lötsch, J., Machine-learned cluster identification in high-dimensional data, J. Biomed. Inform., 66, C, 95-104 (2017)
[133] Ultsch, A.; Thrun, M. C., Credible visualizations for planar projections, (Cottrell, M., 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM) (2017), IEEE: IEEE Nany, France), 1-5
[134] Van der Merwe, D.; Engelbrecht, A. P., Data clustering using particle swarm optimization, (Proc. Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, vol. 1 (2003), IEEE), 215-220
[135] Van Rijsbergen, C., Information Retrieval (1979), Butterworths: Butterworths London · Zbl 0227.68052
[136] Venna, J.; Kaski, S., Comparison of visualization methods for an atlas of gene expression data sets, Inf. Vis., 6, 2, 139-154 (2007)
[137] Venna, J.; Peltonen, J.; Nybo, K.; Aidos, H.; Kaski, S., Information retrieval perspective to nonlinear dimensionality reduction for data visualization, J. Mach. Learn. Res., 11, 451-490 (2010) · Zbl 1242.62006
[138] Wang, Z.; Sun, X.; Zhang, D., A PSO-based classification rule mining algorithm, (Proc. International Conference on Intelligent Computing (2007), Springer), 377-384
[139] Ward, J. H., Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58, 301, 236-244 (1963)
[140] Weyer-Menkhoff, I.; Thrun, M. C.; Lötsch, J., Machine-learned analysis of quantitative sensory testing responses to noxious cold stimulation in healthy subjects, Eur. J. Pain (2018)
[141] Wolpert, D. H., The lack of a priori distinctions between learning algorithms, Neural Comput., 8, 7, 1341-1390 (1996)
[142] Wong, K.-C.; Peng, C.; Li, Y.; Chan, T.-M., Herd clustering: a synergistic data clustering approach using collective intelligence, Appl. Soft Comput., 23, 61-75 (2014)
[143] Yang, X.-S., Firefly algorithms for multimodal optimization, (Proc. International Symposium on Stochastic Algorithms (2009), Springer), 169-178 · Zbl 1260.90164
[144] Yang, X.-S.; He, X., Bat algorithm: literature review and applications, Int. J. Bio-Inspir. Comput., 5, 3, 141-149 (2013)
[145] Zhong, Y., Advanced intelligence: definition, approach, and progresses, Int. J. Adv. Intel., 2, 1, 15-23 (2010)
[146] Zou, W.; Zhu, Y.; Chen, H.; Sui, X., A clustering approach using cooperative artificial bee colony algorithm, Discrete Dyn. Nat. Soc., 2010 (2010) · Zbl 1201.68112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.