×

zbMATH — the first resource for mathematics

Resolvent estimates for Schrödinger operators in \(L^ p(R^ N)\) and the theory of exponentially bounded \(C\)-semigroups. (English) Zbl 0739.47017
The Schrödinger equation \({\partial\psi \over\partial t}=i\Delta\psi+V\psi\) can be studied in the spaces \(L^ p(\mathbb{R}^ N)\), \(1\leq p\leq\infty\). Difficulties arise if \(p\neq 2\) because then the “ unperturbed evolution operator” \(e^{i\Delta t}\) is unbounded. The difficulties can be overcome using a technique of Sjöstrand. Starting from these results, the author obtains growth estimates on the norm of the resolvents \(\|(z-\Delta+V)^{-1}\|_{p,p}\), \(\hbox {Im} z\neq 0\).

MSC:
47D06 One-parameter semigroups and linear evolution equations
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
35J10 Schrödinger operator, Schrödinger equation
47A10 Spectrum, resolvent
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arendt, W.,Vector valued Laplace transforms and Cauchy problems, Israel J. Math.,59, (1987), 327–352. · Zbl 0637.44001 · doi:10.1007/BF02774144
[2] Arendt, W. and Kellermann, H.,Integrated solutions of Volterra integrodifferential equations and applications. In: Integro-differential Equations. Proc. Conf. Trento 1987. G. Da Prato, M. Iannelli (eds.), Pitman (to appear). · Zbl 0675.45017
[3] Cycon, H. L., Froese, R. G., Kirsch, W. and Simon, B.,Schrödinger operators, Texts and Monographs in Physics, Springer-Verlag, 1987. · Zbl 0619.47005
[4] Davies, E. B.,Kernel estimates for functions of second order elliptic operators, Quart. J. Math. Oxford (2)39, (1988), 37–46. · Zbl 0652.35024 · doi:10.1093/qmath/39.1.37
[5] Davies, E. B.,Pointwise bounds on the space and time derivatives of heat kernels, to appear. · Zbl 0702.35106
[6] Davies, E. B.,Heat Kernels and Spectral Theory Camb. Univ. Press, 1989. · Zbl 0699.35006
[7] Davies, E. B., Pang, M.M.H.,The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc.55, (1987), 181–208. · Zbl 0651.47026 · doi:10.1112/plms/s3-55.1.181
[8] Hormander, L.,Estimates for translation invariant operators in L p spaces. Acta Math.104 (1960), 93–140. · Zbl 0093.11402 · doi:10.1007/BF02547187
[9] Kellerman, H.,Integrated semigroups, J. Funct. Anal., to appear. · Zbl 0689.47014
[10] Lanconelli, E.,Valutazioni in L p R N )della solutione del problema di Cauchy per l’equazione di Schrödinger, Boll. Un. Mat. Ital.4 (1968), 591–607. · Zbl 0167.10401
[11] Miyadera, I.,On the generators of exponentially bounded C-semigroups, Proc. Japan Acad. Series A, Vol.62 (1986), 239–242. · Zbl 0617.47032 · doi:10.3792/pjaa.62.239
[12] Miyadera, I. and Tanaka, N.,Some remarks on the exponentially bounded C-semigroups and the integrated semigroups, Proc. Japan Acad.63, Series A (1987), 139–142. · Zbl 0642.47034
[13] Neubrander, F.,Integrated semigroups and their applications to the abstract Cauchy problem, Pac. J. Math.135 (1988), 111–155. · Zbl 0675.47030
[14] Simon, B.,Schrödinger semigroups, Bull. Amer. Math. Soc.7 (1982), 447–526. · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[15] Sjöstrand, S.,On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa24 (1970), 331–348. · Zbl 0201.14901
[16] Tanaka, N.,On the exponentially bounded C-semigroups, Tokyo J. Math.10 (1987), 107–117. · Zbl 0631.47029 · doi:10.3836/tjm/1270141795
[17] Davies, E. B.,Some norm bounds and quadratic form inequalities for Schrödinger operators, J. Operator Theory,9 (1983), 147–162. · Zbl 0516.47025
[18] Davies, E. B.,Heat kernel bounds for second order elliptic operators on Riemannian manifolds, Amer. J. Math.109 (1987), 545–570. · Zbl 0648.58037 · doi:10.2307/2374567
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.