×

zbMATH — the first resource for mathematics

Transition densities for Brownian motion on the Sierpinski carpet. (English) Zbl 0739.60071
Upper and lower bounds are obtained for the transition densities \(p(t,x,y)\) of Brownian motion on the Sierpinski carpet. These are of the same form as those which hold for the Sierpinski gasket. In addition, the joint continuity of \(p(t,x,y)\) is proved, the existence of the spectral dimension is established, and the Einstein relation, connecting the spectral dimension, the Hausdorff dimension and the resistance exponent is shown to hold.

MSC:
60J65 Brownian motion
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [BS] Bandt, C., Stahnke, J.: Self-similar sets 6. Interior distance on deterministic fractals. (Preprint 1990)
[2] [B] Barlow, M.T.: Necessary and sufficient conditions for the continuity of local time of Lévy processes. Ann. Probab.16, 1389-1427 (1988) · Zbl 0666.60072 · doi:10.1214/aop/1176991576
[3] [BB1] Barlow, M.T., Bass, R.F.: The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. Henri Poincaré25, 225-257 (1989) · Zbl 0691.60070
[4] [BB2] Barlow, M.T., Bass, R.F.: Local times for Brownian motion on the Sierpinski carpet. Probab. Theory Relat. Fields85, 91-104 (1990) · Zbl 0685.60076 · doi:10.1007/BF01377631
[5] [BB3] Barlow, M.T., Bass, R.F.: On the resistance of the Sierpinski carpet. Proc. R. Soc. Lond Ser. A431, 345-360 (1990) · Zbl 0729.60108 · doi:10.1098/rspa.1990.0135
[6] [BBS] Barlow, M.T., Bass, R.F., Sherwood, J.D.: Resistance and spectral dimension of Sierpinski carpets. J. Phys. A.23, L253-L258 (1990) · Zbl 0717.58031 · doi:10.1088/0305-4470/23/6/004
[7] [BP] Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpinski gasket. Probab. Theory Relat. Fields79, 543-623 (1988) · Zbl 0635.60090 · doi:10.1007/BF00318785
[8] [BH] Bass, R.F., Hsu, P.: Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains. Ann. Probab. (to appear) · Zbl 0732.60090
[9] [FaS] Fabes, E.B., Stroock, D.W.: A new proof of Moser’s inequality using the old ideas of Nash. Arch. Ration. Mech. Anal.96, 328-338 (1986) · Zbl 0652.35052 · doi:10.1007/BF00251802
[10] [F] Fukushima, M.: Dirichlet forms and Markov processes. Tokyo: Kodansha, 1980 · Zbl 0422.31007
[11] [FS] Fukushima, M., Shima, T.: On a spectral analysis for the Sierpinski gasket. J. Potential Anal. (to appear)
[12] [HBA] Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys.36, 695-798 (1987) · doi:10.1080/00018738700101072
[13] [H] Hambly, B.M.: On the limiting distribution of a supercritical branching process in a random environment. (Preprint 1990). · Zbl 0758.60089
[14] [KR] Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Sel. Transl. Ser. 1.10, 199-325 (1962)
[15] [L] Lindstrøm, T.: Brownian motion on nested fractals. Mem. Am. Math. Soc.240 (1990) · Zbl 0688.60065
[16] [M] Marcus, M.B., Rosen, J.: Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. (Preprint 1990) · Zbl 0762.60068
[17] [O] Osada, H.: Isoperimetric dimension and estimates of heat kernels of pre-Sierpinski carpets. Probab. Theory Relat. Fields86, 469-490 (1990) · Zbl 0685.60081 · doi:10.1007/BF01198170
[18] [RT] Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J. Phys. Lett.44, L13-L22 (1983)
[19] [W] Watanabe, H.: Spectral dimension of a wire network. J. Phys. A.18, 2807-2823 (1985) · Zbl 0572.60081 · doi:10.1088/0305-4470/18/14/030
[20] [Y] Yosida, K.: Lectures on differential and integral equations. New York: Interscience 1960 · Zbl 0090.08401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.