zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. (English) Zbl 0739.65096
For approximating the solution of a weakly nonlinear Schrödinger equation $L\sp 2$ conservative schemes are studied. The schemes are based on a space-discretization by the Galerkin method (in $H\sp 1\sb 0$). For the time-discretization two Crank-Nicolson type methods are used. Existence, uniqueness and convergence of the approximate solution to the exact one are proved. Existence, uniqueness and convergence of the approximate solution to the exact one are proved. The Newton method of “inner” iterations for solving the system of complex nonlinear equations is discussed. Numerical results are given.

65Z05Applications of numerical analysis to physics
65M06Finite difference methods (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
35Q55NLS-like (nonlinear Schrödinger) equations
Full Text: DOI EuDML
[1] Brezis, H., Gallouet, T.: Nonlinear Schr?dinger evolution equations. Nonlinear Analysis4, 677-681 (1980) · Zbl 0451.35023 · doi:10.1016/0362-546X(80)90068-1
[2] Browder, F.E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. In: Finn, R. (ed.) Applications of Nonlinear Partial Differential Equations. Proc. Symp. Appl. Math. v. 17, pp. 24-49. Providence: American Mathematical Society 1965
[3] Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a non-linear Schr?dinger equation. J. Comput. Phys.44, 277-288 (1981) · Zbl 0477.65086 · doi:10.1016/0021-9991(81)90052-8
[4] Griffiths, D.F., Mitchell, A.R., Morris, J.Ll.: A numerical study of the nonlinear Schr?dinger equation. Comput. Methods Appl. Mech. Eng.45, 177-215 (1984) · Zbl 0555.65060 · doi:10.1016/0045-7825(84)90156-7
[5] Herbst, B.M., Morris, J.Ll., Mitchell, A.R.: Numerical experience with the nonlinear Schr?dinger equation. J. Comput. Phys.60, 282-305 (1985) · Zbl 0589.65084 · doi:10.1016/0021-9991(85)90008-7
[6] Le Mesurier, B., Papanicolaou, G., Sulem, C., Sulem, P.-L.: The focusing singularity of the nonlinear Schr?dinger equation. In: Crandall, M.G., Rabinowitz, P.H., Turner, R.E. (eds.) Directions in Partial Differential Equations, pp. 159-201. New York: Academic Press 1987 · Zbl 0659.35020
[7] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. New York Berlin Heidelberg: Springer 1983 · Zbl 0516.47023
[8] Rasmussen, J.J., Rypdal, K.: Blow-up in Nonlinear Schr?dinger equations?I. A general review. Phys. Scr.33, 481-497 (1986) · Zbl 1063.35545 · doi:10.1088/0031-8949/33/6/001
[9] Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schr?dinger equation. Math. Comput.43, 21-27 (1984) · Zbl 0555.65061 · doi:10.1090/S0025-5718-1984-0744922-X
[10] Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schr?dinger equation. IMA J. Numer. Anal.6, 25-42 (1986) · Zbl 0593.65087 · doi:10.1093/imanum/6.1.25
[11] Strauss, W.A.: The Nonlinear Schr?dinger equation. In: de la Penha, G.M., Medeiros, L.A.J., (eds.) Contemporary Developments in Continuum Mechanics and Partial Differential Equations. pp. 452-465. New York: North-Holland 1978
[12] Strauss, W.A., Vazquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comp. Phys.28, 271-278 (1978) · Zbl 0387.65076 · doi:10.1016/0021-9991(78)90038-4
[13] Sulem, P.L., Sulem, C., Patera, A.: Numerical simulation of singular solutions to the two-dimensional cubic Schr?dinger equation. Comm. Pure Appl. Math.37, 755-778 (1984) · Zbl 0543.65081 · doi:10.1002/cpa.3160370603
[14] Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations II. Numerical, nonlinear Schr?dinger equation. J. Comput. Phys.55, 203-230 (1984) · Zbl 0541.65082 · doi:10.1016/0021-9991(84)90003-2
[15] Thom?e, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics v. 1054. Berlin Heidelberg New York: Springer 1984 · Zbl 0531.73052
[16] Tourigny, Y., Morris, J.LI: An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schr?dinger equation. J. Comput. Phys.76, 103-130 (1988) · Zbl 0641.65090 · doi:10.1016/0021-9991(88)90133-7
[17] Verwer, J.G., Sanz-Serna, J.M.: Convergence of method of lines approximations to partial differential equations. Computing33, 297-313 (1984) · Zbl 0546.65064 · doi:10.1007/BF02242274
[18] Weideman, J.A.C., Herbst, B.M.: Split-step methods for the solution of the nonlinear Schr?dinger equation. SIAM J. Numer. Anal.23, 485-507 (1986) · Zbl 0597.76012 · doi:10.1137/0723033